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Abstract

     This article considers the problem of tuning control law gain parameters to optimize the performance of 
a small spacecraft in low Earth orbit (LEO). The control law under consideration has previously been shown to 
almost globally stabilize the attitude dynamics of a spacecraft under various operating conditions. In the present 
work the gain parameters are optimized offline for a small spacecraft performing a tracking maneuver in which 
the desired attitude is time-varying. The spacecraft is subject to both known actuator saturation limits and multiple 
external moments. Because of the complexity of both the control law and the problem under consideration, a ge-
netic algorithm is used to optimize the gains of the controller. The genetic algorithm is designed to accommodate 
for actuator saturation constraints while still generating desired system performance by means of a user-defined 
fitness function. The controller designs selected by the genetic algorithm are compared to those found by tuning 
the gains manually using an “informed” trial-and-error search, and it is shown that the genetic algorithm-derived 
controller solutions generally yield better system performance. Furthermore, a preliminary investigation into the 
impact of spacecraft parameter variation indicates that the controller design selected by the genetic algorithm is 
robust to parameter uncertainty. This suggests that automated gain tuning by means of a genetic algorithm could 
substitute for a human engineer tuning gains in certain applications.
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1. Introduction 

The problem of tuning controller gain parameters to 
optimize the performance of a spacecraft in low Earth 
orbit (LEO) is of practical interest to the aerospace 

community. This paper focuses on the a priori tuning 
of gains for a recent small spacecraft science mission. 
In general, if the system to be controlled is linear or can 
be linearized about an operating point, then it is pos-
sible to apply classical root locus techniques for pole 
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placement (e.g., Abdel-Motagly, et al., 2003) or more 
advanced linear optimal control techniques (e.g., Ro-
mano, et al., 2007). If the system is nonlinear, however, 
the techniques for tuning controller performance be-
come more complicated. Previously-demonstrated ap-
proaches include application of physics-based control 
strategies to a simplified version of the system (Sand, 
2009) or nonlinear programming techniques (Crespo, 
et al., 2010; Fisher, et al., 2007). In this work, we present 
a new methodology for offline optimization of the gain 
parameters of a nonlinear control law using a genetic 
algorithm (GA). Implementation of a GA has advan-
tages over these other strategies in that no reduction or 
simplification of the underlying equations of motion is 
required, a large swath of the design space can be rap-
idly searched, and the algorithm is less likely to settle 
on local optima (Negnevitsky, 2002; Haupt, 2004). 

Previous results have shown that the controller un-
der study is capable of almost globally stabilizing the 
attitude dynamics of a spacecraft when the control ac-
tuators are subject to known saturation limits and the 
spacecraft is acted upon by environmental moments 
(Sanyal and Chartuvedi, 2008; Sanyal and Lee-Ho, 
2009). With stability established, the GA must deter-
mine what gain values result in the best performance 
of the spacecraft when performing an attitude tracking 
maneuver. Genetic algorithms have been previously 
used in the aerospace industry for complex multi-
variable optimization problems, such as launch vehicle 
design (Bayley, et al., 2008), actuator placement (Heb-
rard and Hentrot, 2003), and control of flexible struc-
tures (Peng, et al., 2006). In this study we adapt a GA 
that has been used to optimize the control system of a 
CubeSat-class spacecraft (Sorgenfrei and Joshi, 2011) 
for the present problem of tuning a complex control 
law applied to a small spacecraft. Past applications of 
GAs to controller design have relied on linearization 
of the system equations (Krishnakumar and Goldberg, 
1992), simplification of the contributing external mo-
ments (Qi, et al., 2006), or coupling of a GA with gradi-
ent search methods to tune the gains (Seywald, et al., 
1995). In contrast, this research utilizes a stand-alone 
genetic algorithm to optimize the gains of a nonlinear 
control law applied to a small spacecraft subject to mul-

tiple external moments and actuator saturation.
The present work uses as an example the 

Hawai’iSat-1 spacecraft, a small (75 kg) spacecraft that 
was designed to operate in LEO. A collaborative effort 
between the University of Hawai’i and NASA Ames 
Research Center, Hawai’iSat was tasked with observing 
certain characteristics of the Earth’s oceans by means 
of a hyperspectral imager. The overall spacecraft design 
matured as far as the Critical Design Review, and in 
this work the commercially-available sensors and ac-
tuators from that design inform the spacecraft simu-
lation. In particular, the spacecraft was equipped with 
three magnetic torque rods and one reaction wheel 
for control, as well as a three-axis gyroscope, a digital 
magnetometer, and analog sun sensors for attitude de-
termination. This is a very typical suite of sensors and 
actuators for small spacecraft, and the methodology 
presented herein is applicable to a wide range of mis-
sions. For the purposes of this research, only the atti-
tude control problem will be considered; it is assumed 
that full state feedback is available. 

Using the control algorithm of Sanyal and Chartu-
vedi (2008), the spacecraft must track a time-varying 
attitude and maintain a constant angular velocity. This 
is a typical maneuver for a spacecraft operating in LEO, 
in which it can be desirable for a body-fixed reference 
frame to track a local vertical, local horizontal (LVLH) 
orbit frame, which itself rotates about an inertially fixed 
Earth-centered frame. By tracking the attitude of the 
LVLH frame, it is possible for nadir-facing instruments 
on the spacecraft to continuously observe the surface of 
the Earth. This was the requirement for the Hawai’iSat 
mission, in which the hyperspectral imaging payload 
had to be constantly nadir-pointing. The challenge for 
the control algorithm is to drive the spacecraft from an 
arbitrary initial state to tracking the LVLH frame in the 
presence of actuator saturation constraints and exter-
nal environmental moments.

In this work, we compare the performance of the 
genetic algorithm to that of an “informed” trial-and-
error approach. The space of candidate design solutions 
is extremely large; thus, an exhaustive test of every pos-
sible design is intractable. As such, in order to achieve 
desirable performance with the candidate control law, 
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a control systems engineer would need to apply their 
intuition, through a trial-and-error search of a portion 
of the design space. This trial-and-error strategy would 
likely be guided by performance metrics that are rele-
vant to the needs of the application at hand. In a genetic 
algorithm, such metrics are captured in a “fitness func-
tion.” For this research, a fitness function is created that 
seeks a balance between settling time and the amount 
of control effort expended. Prior to implementation of 
the fitness function, a so-called “death-penalty” is ap-
plied to any design for which the commanded control 
torque exceeds the maximum available torque from the 
control actuators. In order to better understand the ef-
ficacy of the genetic algorithm for gain optimization, a 
comparison is made between the fitness of controller 
designs found using the algorithm and those found via 
trial-and-error tuning performed by a control systems 
engineer.

The remainder of this article is organized as fol-
lows. First, the rotational dynamics of a spacecraft 
in LEO is briefly reviewed and the control law under 
study is presented in Section 2. The genetic algorithm 
used to optimize the gains of this control law is pre-
sented in Section 3, along with a description of the fit-
ness function and death penalty employed. Simulation 
results for the gain optimization effort are presented in 
Section 4, and a discussion of these results is offered in 
Section 5. Finally, conclusions and recommendations 
for future work are made in Section 6.

2.  Spacecraft Dynamics and Control

2.1 Spacecraft Rotational Dynamics

The problem of controlling the attitude dynamics 
of a small spacecraft in LEO subject to external mo-
ments was addressed in Sanyal and Chartuvedi (2008). 
Prior to formulating this problem, it is important to 
first define a set of reference frames that are appropri-
ate for the given application. In this work, we assume 
the spacecraft is operating in a circular, equatorial or-
bit. As such, the inertial reference frame N is defined 
with the n2 unit vector normal to the orbit plane, the 
n1 unit vector pointing towards vernal equinox, and 
the n3 unit vector completing the right-handed system. 

The control task to be performed is for the spacecraft 
body frame to track the LVLH reference frame, which 
is defined such that the l2 unit vector is normal to the 
orbit plane, the l1 vector points in the spacecraft veloc-
ity direction, and the l3 vector points towards zenith. 
The LVLH frame rotates about the inertial frame at a 
rate equal to the spacecraft orbital rate Ω0, which gives 
rise to the tracking problem under study. The origin of 
the body-fixed reference frame B is located at the geo-
metric center of the spacecraft, and its axes are defined 
such that the B frame and the LVLH frame are aligned 
when the rotation matrix (to be defined shortly) from 
the B frame to the LVLH frame equals identity. A vi-
sualization of the N={ n1, n2, n3} and LVLH ={ l1, l2, l3} 
frames, as well as the Hawai’iSat spacecraft and the B 
frame (with axes b1, b2, b3), are given in Figure 1.

Figure 1. Inertial reference frame N and local vertical, local horizontal 
LVLH reference frame (left) and body-fixed frame (right) for the problem 
under study.

As outlined in Wertz and Larson (1978), typical 
sources of external moments in LEO include aero-
dynamic drag, gravity gradient effects, solar pressure 
drag, and residual magnetism. While the control law 
considered herein can stabilize a system in the most 
general case in which all of these moments are pres-
ent (Sanyal and Chartuvedi, 2008), in this work we will 
consider only the moments contributed by aerody-
namic drag and the gravity gradient of the spacecraft. 
For typical LEO missions, the moment contributed by 
aerodynamic drag is the largest external contributor 
by at least an order of magnitude (Wertz and Larson, 
1978), and this is also the case for Hawai’iSat. As such, 
it is a reasonable simplification to only consider these 
two external moments. In this case, the equations of 
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motion for the rotation of the spacecraft are given by 
Euler’s equation (Kane, et al., 1983) as

(1)

where J is the inertia tensor for the spacecraft in kg 
m2, ω is the angular velocity (in rad s-1) of the spacecraft 
defined in the B frame, τ is the control torque, Mad is 
the aerodynamic drag moment, and Mg is the gravity 
gradient moment, all given in N m. Note that both en-
vironmental moments are dependent upon the orien-
tation of the spacecraft with respect to LVLH reference 
frame (Wertz and Larson, 1978), such that

(2)

(3)

In Equation (2), ρ is the atmospheric density at the 
orbit altitude in kg m-3, Cd is the drag coefficient of the 
spacecraft, A is the spacecraft area normal to the veloc-
ity direction in m2, and V is the linear velocity of the 
spacecraft in m s-1. The unit vector v is in the veloc-
ity direction, while SCP is the vector from the center of 
mass to the center of pressure of the spacecraft (defined 
in the B frame). The rotation matrix BRL in (3) defines 
the rotation from the LVLH frame to the B frame, and 
the unit vector -l3 is used because we require the nadir 
vector direction to define the gravity gradient moment. 
While the controller to be optimized uses a feed-for-
ward term to eliminate the environmental moments, 
it is important to note that the presence of these ex-
ternal moments will still result in complex spacecraft 
motion. Referring back to Equation (1), the moments 
could impart general three-axis rotation, a behavior 
which could not be accurately analyzed using a linear 
approximation of (1). As such, a gain-tuning strategy 
that can accommodate the full nonlinear motion of the 
system is desirable.

Following the notation of Sanyal and Chartuvedi 
(2008) and Sanyal and Lee-Ho (2009), rotation matri-
ces are used to describe the orientation of the space-
craft body frame with respect to an inertial reference 
frame. Rotation matrices (denoted R) are members of 
the special orthogonal group SO(3), defined in Bullo 

and Lewis (2005) as:

and the evolution of a given rotation matrix R in time 
is governed by the equation

                                                                               (4)

where ωx is the skew-symmetric operator that carries a 
3x1 vector into a 3x3 matrix (Bullo and Lewis, 2005). 
Equations (1) and (4) fully describe the rotational mo-
tion of a spacecraft in LEO. We further parameterize 
this motion by introducing expressions for the error in 
attitude and angular velocity, denoted by Q and ωe re-
spectively:

                                                             (5)
 

                                        (6)

where Rd and ωd are the desired spacecraft attitude and 
angular velocity, both of which are defined with respect 
to the inertial frame N. The rotational motion of the 
spacecraft (Equations (1) and (4)), parameterized by 
the rotational and angular velocity error (Equations (5) 
and (6)) serves as the foundation for the development 
of the control law presented in the next section.

2.2 Candidate Control Law

The control law to asymptotically track the desired 
attitude and angular velocity of a spacecraft is first pro-
posed in Sanyal and Chartuvedi (2008) as:

                        

(7)

While it is beyond the scope of this article to fully 
replicate the proof of almost global stability for this 
controller, some interesting properties of Equation (7) 
are discussed here.

Let L and K be positive definite control gain ma-
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trices, with the restriction that the diagonal elements 
of K must be non-equal (e.g., k1 ≠ k2 ≠ k3). As seen 
in Equation (7), the gain matrix L operates on the an-
gular velocity error ωe and the gain matrix K operates 
on the angular position error Q. Note also that the out-
put control law is dependent upon the desired angular 
velocity ωd and angular acceleration ωd, and that the 
attitude-dependent aerodynamic drag moment Mad 
and the gravity gradient torque Mg are included direct-
ly in the control algorithm. This implies that the atti-
tude determination and control subsystem (ADCS) is 
capable of resolving the attitude of the spacecraft and 
feeding that attitude forward to the controller in order 
to calculate estimated values of the two environmen-
tal moments. This is not an unreasonable assumption, 
given that current small spacecraft microprocessors are 
capable of generating state estimates at rates of 4 Hz 
and higher. Based on the proof presented in Sanyal and 
Chartuvedi (2008), it is known that (Q, ωe) = (I,0) is 
an asymptotically stable equilibrium of the closed loop 
system consisting of Equations (1) – (4) and (7), with 
a domain of convergence that is almost global on the 
state space of attitude motion. We seek gain combina-
tions to optimize the performance of this controller for 
tracking a constant angular velocity and a time-varying 
attitude with respect to the inertial frame. 

In this research, we restrict both K and L to be-
ing diagonal positive definite matrices. While the 
original stability proof requires that K be diagonal 
(Sanyal and Chartuvedi, 2008), no such restriction 
exists for L. However, it is possible to use a diagonal 
version of L without loss of generality by a change of 
body coordinate frames. For example, let R1 be a rota-
tion matrix from the body frame B to a body frame B1. 
Then, for a general torque vector applied in each body 
frame, we have the relationship τ1 = R1τ and R1L ωe = 
R1LR1

T(R1 ω1) = L0(R1 ω1), where L0 = R1LR1T is 
diagonal. Reduction of the gain matrix L to a diagonal 
3x3 matrix results in a total of six gain terms that need 
to be optimized for the maneuver under consideration. 
Note that while the nonlinear controller is “PD-like” in 
structure, one cannot assume that the algorithm will 
behave exactly like the linear counterpart, making the 
task of tuning the six gain terms a formidable one.

3.  The Genetic Algorithm

3.1 Algorithm Overview

Genetic algorithms have previously been used for 
optimization of complex design problems in the aero-
space industry, including control law gain tuning for 
a linear system (Krishnakumar and Goldberg, 1992). 
As outlined in Negnevitsky (2002), GAs use funda-
mental concepts from evolutionary biology to “evolve” 
a population of solutions for a given design problem 
by assessing the fitness of each candidate solution. Past 
results (Holland, 1975) have shown that GAs yield bet-
ter and better design solutions as more  generations 
are evolved. Design solutions are encoded as a string 
of binary digits, with one such string of bits making 
up a “chromosome” (a design). Over the life of the 
algorithm, the population of chromosomes is sub-
jected to the probabilistic genetic operators of crosso-
ver and mutation. The probability of crossover and/or 
mutation occurring is controllable by the user, and a 
detailed study on the ideal combinations of these at-
tributes is provided in Grefenstette (1986). Past work 
on gain tuning via GAs has been limited to linear sys-
tems (Qi et al., 2006) or control laws with relatively few 
gain parameters (Omatu and Yoshioka, 1997). In the 
current research, we consider the general rotation of 
a small spacecraft as governed by a nonlinear control 
law with six gain terms total. This results in a large, 
complex space of designs that is not easily searchable 
using traditional methods. The basic genetic algorithm 
used in this work was first presented in Sorgenfrei et al. 
(2010), where it was applied to linear controller design 
for nanosatellites. Extensions have since been made to 
accommodate a broader range of control algorithms 
used for small spacecraft  (Sorgenfrei and Joshi, 2011; 
Sorgenfrei et al., 2012). The present research expands 
upon this foundation, using the same algorithm struc-
ture to tune the gains of a nonlinear controller applied 
to a small spacecraft subject to environmental mo-
ments and actuator saturation constraints.

A standard approach to solving complex optimiza-
tion problems such as that considered here would be 
to apply a convex optimization routine (Robinett et al., 
2005). Unfortunately, one downside to implementing 

Controller Gain-Tuning for a Small Spacecraft Attitude Tracking Maneuver Using a Genetic Algorithm

JoSS, Vol. 2, No. 1, p. 109



Copyright © A. Deepak Publishing. All rights reserved.

traditional gradient search techniques is their propen-
sity to settle on local optima when applied to non-con-
vex performance indices, a problem that is particularly 
relevant to the complex design space considered here. 
While there is not a mathematical proof for the ability 
of genetic algorithms to yield the globally optimal solu-
tion to a particular problem, the probabilistic genetic 
operators employed have a tendency to drive the GA to 
avoid such local optima by “pushing” it into different 
regions of the design space. Instead of using a convex 
optimization approach, this article compares the per-
formance of the genetic algorithm to an informed trial-
and-error strategy, which is described in greater detail 
in Section 4.

The central element of any GA implementation is 
the chromosome structure used to encode the mem-
bers of the design population under study. Referring 
back to the control law of Equation (7), there are six 
gain terms to be tuned, three each in the gain matrices 
K and L. Based on preliminary testing of the control-
ler in simulation, the GA will test gain values between 
0.0001 and 0.1. The magnitude of these gains might 
seem relatively low, but it was found that gains in this 
range gave rise to controller solutions less likely to vio-
late the actuator saturation death penalty. The imple-
mentation of this penalty will be described further in 
the next subsection. If six bits are used to encode each 
gain term (resulting in 26 = 64 increments), a resolution 
of 0.00016 can be achieved by evenly dividing the gain 
interval of 0.0001 - 0.1 into 64 steps. Using six bits per 
gain term results in a gene that is 36 bits long, where 
each bit (gene) represents a part of the binary represen-
tation of a gain value. There are 64 possible gain values 
for the six different gain terms, resulting in more than 
68 billion (646) design solutions.  A visualization of a 
representative chromosome for the current problem is 
given in Figure 2.

 

Figure 2. Visualization of the chromosome structure used to 
optimize the nonlinear controller under study.

At the outset of the algorithm, a random population 
of designs is created and each one is tested in a space-
craft maneuver simulation environment constructed 
using MATLAB. After the simulation is complete, the 
fitness of the design is evaluated using the fitness func-
tion. Once all of the chromosomes have been tested, 
the most-fit solutions are selected for reproduction 
via application of tournament selection of size two. A 
new generation of designs is created, using the most-fit 
designs from the previous generation as parents, and 
crossover and mutation are applied during the repro-
duction process. The size of the design population, the 
number of generations for which the algorithm is run, 
the crossover probability, and the mutation probability 
are all selectable by the user. Using Grefenstette (1986) 
as a guide, a number of different GA trials are under-
taken in this work in order to find the best combination 
of variables for the problem under study.

3.2 Fitness Function Implementation

The fitness function used to assess the perfor-
mance of each controller design was first introduced 
in Sorgenfrei and Joshi (2011). This function rewards 
controller designs that result in the minimum possi-
ble combination of settling time (Ts) and the amount of 
control effort expended (Ce), such that

                                                      
 (8)

The desire to balance minimal settling time against 
minimal control effort is a benchmark problem in 
spacecraft engineering (Wie, 2005); however, for mul-
ti-axis rotation problems, the standard definition of 
settling time cannot be applied. In this work we define 
settling time in terms of the principal axis of rotational 
error ζ which can be extracted directly from the atti-
tude error rotation matrix Q using Rodrigues’ formula 
(Bullo and Lewis, 2005). A system is considered to have 
settled when the norm of the attitude error vector ζ 
falls below a certain reference level ||ζ|| < || ζref ||, where 
ζref is determined from an attitude error reference ma-
trix Qref. This rotation is defined as the composition of 
three principal rotations about each axis in an amount 
of 0.1°, e.g.,       . 
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Note that this compound rotation is equivalent to || 
ζref || = 0.003. The total control effort expended dur-
ing a maneuver is calculated as the L1 norm of the total 
torque produced by the actuators, with Ce defined as

                                          (9)                                     

The i subscript in Equation (9) denotes the ith time 
step of the simulation, and the overall value of Ce is 
given in units of N m s. A non-zero weight factor β 
is included in Equation (8) to allow for tuning of the 
relative importance of the two performance metrics, as 
well as to roughly account for unit-based differences 
in the magnitude of these metrics. Thus, if a spacecraft 
designer was more concerned with minimizing the 
amount of control effort expended, it would be possi-
ble to increase β to penalize designs requiring a higher 
amount of control effort. Regardless of the value of β, 
the most desirable controller design will be that which 
results in the largest (least negative) value of f. This re-
sults from the smallest possible combination of Ts and 
Ce. Genetic algorithm search results will be presented 
both for β = 1 and for a value of β that has been selected 
to more closely balance the magnitude of the two per-
formance metrics.

Prior to assessing the quality of a given design by 
applying the fitness function, each candidate controller 
solution must pass through a death penalty. This death 
penalty is used to ensure that the controller design 
never requires more than the maximum available con-
trol torque that the actuators can produce. For this re-
search, the Hawai’iSat spacecraft model was simplified 
slightly by only considering the magnetic torque rods 
as available actuators, and treating the Earth’s magnetic 
field as constant for a given orbit altitude. While it is a 
well-known fact that the Earth’s field varies throughout 
a standard LEO orbit, inclusion of a detailed magnetic 
field model is beyond the scope of the current work. 
The selected torque rods are capable of producing a 
magnetic moment of 25 A m2, which is equivalent to 
approximately 1.2 mN m of torque about each axis in a 
circular LEO orbit of 600 km. After a controller design 
is implemented in our MATLAB spacecraft simula-
tor, the death penalty checks to see if a control torque 
greater than the saturation limit was ever commanded. 

If an issued control command violates the saturation 
limit, the death penalty discards that design from the 
design population. If not, that design is passed to the 
fitness function for evaluation. In this way, the genetic 
algorithm is capable of not only ensuring that the ac-
tuator saturation limit is not violated, but also selecting 
a controller that will yield ideal system performance by 
way of the fitness function. Simulation results using the 
GA are presented in the next section.

4.  Numerical Simulation

4.1 Simulation Description

The gain parameters for the control law given in 
Equation (7) are tuned to generate the best possible re-
sponse for a small spacecraft attitude tracking maneu-
ver. Initially, the spacecraft is rotated 1° about an arbi-
trary principal axis of rotation, and has zero angular 
velocity in the B frame. This initial state is analogous to 
that which may be achieved after a spacecraft has com-
pleted the “detumble” phase of operations, in which the 
initial angular velocity of the system is damped out, of-
ten using magnetic torquers for actuation (Wertz and 
Larson, 1978). In this research, the principal axis of the 
initial rotational error is defined as

 

and it is the job of the controller to drive the spacecraft 
from this initial error state to the desired state. The de-
sired angular velocity of the spacecraft is ωd = [ 0  Ω0 
0 ]T (rad/s), which results in a time-varying desired 
rotation matrix Rd. When this desired state has been 
achieved, the spacecraft will be holding its alignment 
with the LVLH frame as that frame orbits the Earth. 
Gain parameters will be tuned using the fitness func-
tion of (8) and the aforementioned death penalty as a 
guide.

The stability proof presented in Sanyal and Char-
tuvedi (2008), levies no requirements as to the inertia 
properties of the spacecraft, and the controller in ques-
tion has been applied to a wide range of spacecraft sizes 
(Sanyal and Chartuvedi, 2008; Sanyal and Nordkvist, 
2010). In this research, we use the inertia tensor for the 
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Hawai’iSat spacecraft as modeled by the design team, 
with J = diag (5.69  5.69  4.26) kg m2. This is the inertia 
tensor for a cylindrically shaped small spacecraft meas-
uring 0.66 m in diameter and 0.77 m tall.  Recall that, as 
stated earlier, the maximum allowable control torque 
that can be applied about any of the three body axes 
is 1.2 mN m.  Numerical simulation of the spacecraft 
system is accomplished using a previously-reported Lie 
group variational integrator (LGVI) (Sanyal and Nord-
kvist, 2012; Lee, et al., 2005).

Two different strategies are used to determine the 
best possible a priori combination of gains for the con-
trol task described above. The first method is to apply 
the genetic algorithm to the gain tuning problem using 
the fitness function (8) combined with a death penalty 
as a guide for desired performance. The second meth-
od, referred to as informed trial-and-error, relies upon 
the intuition of a control systems engineer to tune the 
elements of the gain matrices based on the system be-
havior observed in simulation. An engineer undertak-
ing a trial-and-error approach to gain tuning necessar-
ily has access to the same information provided by the 
fitness function; however, given the large design space, 
it is unlikely that they would be able to explore an ap-
preciable sample of candidate solutions. In contrast, the 
randomized crossover and mutation operators within 
the GA allow for rapid search of a broad swath of the 
design space.

In the trial-and-error tuning approach a control 
systems engineer is given three hours to tune the gain 
variables by hand using the same constraints as de-
scribed in the preceding sections. Three hours were al-
lotted to hand-tuning because that was approximately 
the amount of time required for the GA to execute a 
standard search trial on a desktop PC, and it was de-
sired to create a one-to-one comparison between the 
methods.  For this approach, both gain matrices are ini-
tialized to 0.05 I3x3 (essentially the middle of the admis-
sible gain range) and then numerous simulation itera-
tions are undertaken. After each simulation run, gain 
variables are either increased or decreased depending 
on the observed time-response of the spacecraft. The 

proportional gain matrix K is adjusted first, and then 
the derivative gain matrix L is adjusted as appropriate. 
While the nonlinear controller is “PD-like”, it would 
be incorrect to assume that this controller will demon-
strate the same behavior as its linear counterpart. The 
approach of adjusting the K matrix first and then the L 
matrix is an attempt to tune the proportional response 
prior to the derivative response, but other strategies 
may be equally valid, given that there is only a loose 
analogy to a PD controller. In contrast to this directed 
gain tuning approach, the GA will randomly change 
any gain within the controller structure as dictated by 
the crossover and mutation probability rates. 

4.1 Simulation Results

Four different genetic algorithm trials were initially 
undertaken, the results for which are presented in Ta-
bles (1) and (2). For these preliminary tests the weight 
factor within the fitness function was held at β = 1 in 
order to see what the “natural” behavior of the fitness 
function would be. In these trials the variables of in-
terest are the design population size Pop, the number 
of generations for which the algorithm was run Num, 
and the crossover probability Xover. The values of these 
variables, as seen in Table 1, follow the basic suggestions 
provided in Grefenstette (1986). For all of these simu-
lations the mutation rate was held constant at 0.001%, 
also replicating the work of Grefenstette (1986). The 
outputs that are recorded for these GA trials are the 
maximum fitness value achieved fmax, the settling time 
in seconds (Ts), the control effort in N m s (Ce), and 
the gain values that resulted in these performance at-
tributes (given in Table 2).

Table 1. GA performance for four trials with β = 1
Pop Size Num Xover fmax Ts (s) Ce (Nms)

40 20 80 -205.4 205.4 0.12

40 40 70 -187.2 187.1 0.12

40 50 70% -179.5 179.4 0.1

50 40 70% -176.2 176.1 0.1
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Table 2. Gain values corresponding to four GA trials with β = 1
k1 k2 k3 l1 l2 l3

0.0445 0.0397 0.0207 0.0715 0.0905 0.0905

0.0619 0.0255 0.0175 0.0937 0.0921 0.0715

0.0651 0.0112 0.0207 0.0905 0.0984 0.0937

0.0604 0.0017 0.0302 0.0968 0.0968 0.0984

As can be seen in Table 1, the best-performing con-
troller solution was achieved using a population of 50 
designs evolved over 40 generations. The maximum fit-
ness score is f = -176.2, corresponding to Ts = 176.1 s 
and Ce = 0.1 N m s. The gain values that resulted in this 
performance are K = diag ( 0.0604 0.0017 0.0302) and 
L = diag ( 0.0968 0.0968 0.0984). A component-wise 
time history of the spacecraft angular velocity and the 
commanded control torque for this best-performing 
controller design are presented in Figure 3.

 

Figure 3. Angular velocity (top plot) and control torque (bottom 
plot) as a function of time for the best controller design found 
using the GA with β = 1.

The efficacy of the GA for gain tuning is compared 
to that of a human control systems engineer using the 
informed trial-and-error approach described in the 
preceding section, with the weight factor set to β = 1. 
Starting with both gain matrices initialized at 0.05 I3x3, 
different gain combinations were tested in simulation 

and then adjusted, based on the observed performance. 
Using this approach, the best-performing gain values 
found were K = diag ( 0.0175 0.02 0.025) and L = 0.1 
I3x3. For this gain combination, a fitness score of f = 
-186.96 was achieved, resulting from a settling time of 
Ts = 186.9 s and a control effort of Ce = 0.0626 N m s. 
It is interesting to note that the hand-tuned gains re-
sulted in the system taking 10 seconds longer to settle, 
but only required approximately 60% of the control ef-
fort needed by the GA-derived solution. The extent to 
which settling time and control effort must be balanced 
is up to the engineer concerned with a specific applica-
tion, and a strength of the GA is that it can be quickly 
re-run for different performance metric weightings as 
desired.

Referring back to the best-performing design 
found using the GA, there is a large difference in the 
numerical value of the settling time and the amount of 
control effort expended. The differences in magnitude 
between Ts and Ce (176.1 vs. 0.1) indicate that it might 
be worthwhile to increase the weight factor β in order 
to force the fitness function to more evenly balance 
between the contributions from the two performance 
metrics during the evolution of the design population. 
In the preceding test case, the magnitude of the settling 
time was large enough that the GA selected a design 
that minimized settling time as much as possible, at the 
consequence of a greater amount of control effort being 
expended. If one were to increase the weight factor to β 
= 1000, a typical value of βCe (as calculated within the 
fitness function) might be on the order of 100 N m s, 
as opposed to 0.1 N m s. If the fitness function aims to 
minimize the combination of settling time and control 
effort, this should have the effect of causing the GA to 
favor designs with a longer settling time that expend 
less control effort. To test this idea, the same four GA 
trials were re-run with β = 1000, the results of which 
are reported in Tables 3 and 4. Note that in Table 3 the 
value of β is included in the value of βCe to reflect the 
balance that the GA is being asked to make via the fit-
ness function. As such, one must divide by 1000 to see 
the value of Ce associated with a specific design solu-
tion.
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Table 3. GA performance for four trials with β = 1000
Pop Size Num Xover fmax Ts (s) βCe (Nms)

40 20 80 -270.38 237.5 32.88

40 40 70 -403.8 268.87 135.1

40 50 70 -289.71 245.9 43.81

50 40 70 -270.36 230.8 39.56

Table 4. Gain values corresponding to the four GA trials with β = 
1000

k1 k2 k3 l1 l2 l3

0.0049 0.0112 0.0096 0.0952 0.0937 0.0826

0.0017 0.035 0.0604 0.0794 0.0715 0.0889

0.0001 0.0033 0.0223 0.0952 0.081 0.0921

0.0096 0.0175 0.0064 0.0984 0.0889 0.0905

 

As can be seen in Table 3, the design solution 
achieved using a population of 50 designs evolved over 
40 generations is just barely the best overall performer. 
For this trial, in which f = -270.36, the value of settling 
time is about 44 seconds greater than in the original 
GA trials, and the control effort has been reduced by 
about 2/3. Thus, the weight factor β has the intended 
effect, in that the fitness function now favors design 
solutions that provide a more even balance of the two 
performance metrics. It is important to note that it is 
not appropriate to compare the values of fmax for β = 
1 and β = 1000. By adjusting the weight factor β, the 
basic structure of the fitness function has now changed, 
and the GA is trying to optimize something different in 
each test case. Instead, one should compare values of 
Ts and Ce across the two trials, as these do not change, 
regardless of the structure of the fitness function. The 
time response of the best-performing design solution 
with β = 1000 can be seen in Figure 4. Note the scale 
of the control torque plot is 10 times smaller than in 
Figure 3.

The design space under study in this research is ob-
viously quite complex. While it is essentially infeasible 
to exhaustively test every admissible design solution 
in this problem, it is possible to test cross-sections of 
the design space to better understand the relationship  

Figure 4. Angular velocity (top plot) and control torque (bottom 
plot) as a function of time for the best controller design found 
using the GA with β = 1000.

between certain gain terms and the resulting fitness 
value. The approach taken was to set β = 1 and hold all 
gain values constant except for two, and then to vary 
these two gains across all admissible values. In the first 
test, all gain values were held to their “optimal” values 
as dictated by the best-performing GA design (with 
β = 1), except the first two entries of the proportional 
gain matrix K (k1 and k2). This results in a controller 
with gains K = diag (k1 k2 0.0302) and L = diag ( 0.0968 
0.0968 0.0984), where k1 and k2 are varied between 
0.0001 and 0.1 using all 64 possible values. By calculat-
ing the fitness value for each possible gain combination, 
it is possible to generate a surface in 3D space (seen in 
the left-hand image of Figure 5 below), showing how 
the fitness value varies with changing values of k1 and 
k2. The highest fitness score found in this cross-section-
al optimization test is f = -165.53, corresponding to Ts 
= 165.4 s and Ce = 0.13 N m s. This performance was 
achieved using k1 = 0.0449 and k2 = 0.0641. It is impor-
tant to notice that there is one point (k1 = k2= 0.0001) 
in Figure 5 which has an extremely low fitness value. 
Referring back to Section 2, one requirement intro-
duced in the stability proof of Sanyal and Chartuvedi 
(2008), was that all values of the gain matrix K be non-
equal. Given that this gain combination violates that 
requirement, the extremely poor fitness value may not 
be surprising. Logic was written into the genetic algo-
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rithm to discard randomly generated values of K that 
violated the stability requirements of (7), thus avoiding 
any such outliers.

A similar test to determine the relationship between 
the fitness value and certain gain terms was performed 
for the derivative gain matrix L, in which the gain ma-
trices were set to K = diag (0.0604 0.0017 0.0302) and 
L = diag ( l1 l2 0.0984) for all possible values of l1 and l2. 
Seen in the right-hand image of Figure 5, there are no 
discontinuities in this fitness surface because the only 
requirement imposed on the gain matrix L is that it be 
positive definite. Thus, all gain combinations within 
the gain range being tested are valid solutions for the 
controller design problem, in that all values tested are 
nonzero. For this exhaustive search test, the maximum 
fitness value achieved is f = -175.5, corresponding to a 
settling time of Ts = 175.4 s and Ce = 0.1 N m s. This 
performance was accomplished with the two deriva-
tive-type gains set to their maximum value, such that 
l1 = l2 = 0.1.

5. Discussion

The results presented in the preceding section in-
dicate that the GA-based a priori gain tuning approach 
yields comparable performance to a hand-tuning ap-
proach, and has a greater likelihood of outperforming 
the hand-tuning strategy. For the study in which β = 

1, the GA was able to find a design with a better maxi-
mum fitness score, and was also able to search a broad-
er swath of the overall design space. As a point of refer-
ence, during the roughly three hour execution time of 
the GA, 2000 design solutions were tested, while dur-
ing the informed trial-and-error approach, approxi-
mately 120 designs were tested. Furthermore, during 
the three hours in which the GA was executing, no hu-
man involvement was necessary, which means that on 
a real-world project, the attending engineer could be 
performing other tasks during the GA design process. 
It is noteworthy that the hand-tuned solution yielded 
a design that expended less control effort. The need to 
minimize either settling time or control effort expend-
ed is obviously a choice of the control systems engineer, 
and depends on the application. For the Hawai’iSat 
mission, it was necessary to slew the spacecraft around 
to point the hyperspectral imager to the required loca-
tion in a relatively short amount of time, and thus set-
tling time was typically prioritized higher than control 
effort expended. Depending on the specific application 
in question, a reverse set of priorities may in fact hold, 
but the fitness function can easily re-tuned to reflect a 
different balance.

The relative importance of settling time and the 
amount of control effort expended also inform the se-
lection of the weight factor β. Since the numerical val-
ues of settling time for the tracking maneuver are so 
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much larger than the numerical values of control effort 
expended across that maneuver, the impact of changes 
in control effort expended from one set of gains to an-
other is much less observable. Increasing the value of β 
makes the impact of the control effort metric more ob-
servable, causing the GA to favor different gain combi-
nations.  For Hawai’iSat, the controller designs result-
ing from using β = 1 were appropriate for the specific 
needs of the tracking maneuver, but the same might not 
be true for other maneuvers or different spacecraft. The 
weight factor within the fitness function is a powerful 
tool for balancing multiple performance metrics, but 
the specifics of that balance must be the responsibility 
of the design engineer.

An important question for any controller design 
scheme is that of sensitivity of the solutions to chang-
es in system parameters. One system model was used 
to test all of the controller design solutions within the 
GA population, and it is certain that some system pa-
rameters will differ between the spacecraft simulation 
and the real world hardware. To better understand the 
impact of parameter variations on the GA-derived 
‘optimal’ controller, the entries of the diagonal inertia 
tensor J were varied ±2.5%, ±5%, ±7.5%, ±10%, and 
±12.5%. The spacecraft simulation was then re-run for 
the tracking maneuver, all using the same fixed gains 
found via the GA optimization, but now for each of the 
perturbed values of J. A plot of the maneuver settling 
time and amount of control effort expended for the dif-
ferent changes in J can be seen in Figure 6.

 

Figure 6. Settling time and amount of control effort expended as 
a function of percentage difference in the inertia tensor values.

As seen in Figure 6, both Ts and Ce tend to get bet-
ter for decreasing values of the inertia tensor J, while 
they get worse for increasing values of J. This follows 
intuition, in that the same amount of control torque is 
being applied to a system that now has less mass, and 
thus the spacecraft can be driven more quickly to the 
desired final state without any “cost” to the amount of 
control effort expended. It is, however, interesting to 
see the large jump in the value of Ts when the inertia 
perturbation is increased from 10% to 12.5%. Appar-
ently, when this much of a mass increase is seen, the 
selected controller design is no longer effective for the 
tracking maneuver. To better understand the phenom-
enon of changing the inertia tensor by 12.5%, the time 
history of the norm of the principal error direction ζ 
and the norm of the total control torque τ are plotted 
for the nominal inertia tensor (J0), the inertia tensor 
for a +12.5% change in inertia (Jp), and the inertia ten-
sor for a -12.5% change in inertia (Jm). As seen in these 
plots, the controller performs worst when the inertia 
terms have been increased by a full 12.5%.

 

Figure 7. Comparison in the norm of the principal error angle ζ 
(left plot) and norm of control torque (right plot) for the nominal 
inertia tensor (J0), the +12.5% inertia tensor (Jp) and the -12.5% 
inertia tensor (Jm).

Another aspect of parameter sensitivity that is of 
interest to a control systems designer is that of sensitiv-
ity to changes in the gain values themselves. Referring 
back to Figure 5, it is important to note first of all that 
there are no gain combinations that result in the system 
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becoming unstable.  As such, one can use this figure to 
study how changing gain values will affect the overall 
fitness of a controller solution. For example, in the left 
plot, one sees that there are plateaus of constant fitness 
value whereby changes in l1 or l2 do not impact the per-
formance of the spacecraft system.  In contrast, the plot 
of variations in k1 and k2 show ridges of approximately 
constant fitness value. Thus, varying k1 or k2 might re-
sult in a decrease in the spacecraft system performance, 
although none of these ridges are extremely steep. This 
gain sensitivity is not a feature of the GA-based ap-
proach; it is a function of the design problem itself. A 
human control systems engineer would also encoun-
ter sensitivity to changes in the values of the K gain 
terms after selecting the best-performing gain values 
for implementation. This sensitivity to gain changes 
arises from the physical system and the controller un-
der study, not the gain tuning methodology. It is very 
important to remember that the surfaces seen in Figure 
5 are only one cross-section of a much more complex 
multi-dimensional design space, but studying these 
plots does provide some insight into the sensitivity of 
the controller gain terms.

6.  Conclusion

This paper presents a strategy for tuning the gains 
of an almost globally stable control law offline for ap-
plication to a small spacecraft attitude tracking maneu-
ver. The spacecraft inertia properties, environmental 
moments, and actuator saturation limits are all adapted 
from the real world Hawai’iSat-1 small spacecraft mis-
sion. The tracking maneuver under study is motivated 
by the science payload within Hawai’iSat-1, and is ap-
plicable to a wide range of missions in LEO. The results 
indicate that the genetic algorithm-based approach to 
gain tuning is more efficient than an informed trial-
and-error approach, in that a better fitness value was 
achieved and a wider range of gain values were test-
ed in the same period of time. Preliminary sensitivity 
studies show that changes in system properties (such 
as the spacecraft inertia tensor entries) do impact the 
performance of the GA-based design, but it is impor-
tant to remember that the same effects would be felt by 
a controller design tuned by hand. An important ex-

tension of this research would be to perform the same 
studies using a spacecraft model in which both sensor 
and actuator noise are included or the effects of using 
an estimation scheme are simulated. 
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