

www.DeepakPublishing.com www. JoSSonline.com

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3 p. 789

Geletko, D. M. et al. (2018): JoSS, Vol. 7, No. 3, pp. 789–800

(Peer-reviewed article available at www.jossonline.com)

NASA Operational Simulator for Small
Satellites (NOS3): The STF-1 CubeSat

Case Study
Dustin M. Geletko, Matthew D. Grubb, John P. Lucas, Justin R. Morris,

Max Spolaor, Mark D. Suder, Steven C. Yokum, and Scott A. Zemerick
NASA Independent Verification and Validation (IV&V), Independent Test Capability (ITC)

Jon McBride Software Testing & Research (JSTAR) Laboratory

Fairmont, West Virginia US

Abstract

One of the primary objectives of small satellites is to reduce the costs associated with spacecraft develop-

ment and operations as compared to traditional spacecraft missions. Small satellite missions are generally able

to reduce mission planning, hardware, integration, and operational costs; however, small satellite missions

struggle with reducing software development and testing costs. This paper presents the case study of the NASA

Operational Simulator for Small Satellites (NOS3), a software-only simulation framework that was developed

for the Simulation-to-Flight 1 (STF-1) 3U CubeSat mission. The general approach is to develop software simu-

lators for the various hardware flight components (e.g., electrical power system, antenna deployment system,

etc.) to create a completely virtual representation of the actual spacecraft system. In addition, NOS3 convenient-

ly packages together a set of opensource software packages including the “42” dynamics simulator, the space-

craft software development framework (core Flight System), and a command and control system (COSMOS).

This results in a flexible and easily deployable simulation environment that can be used to support software de-

velopment, testing, training, and mission operations. The NOS3 environment contributed to the success of the

STF-1 mission in several ways, such as reducing the mission’s reliance on hardware, increasing available test

resources, and supporting training and risk reduction targeted testing of critical software behaviors on the simu-

lated platform. The NOS3 has been released as open-source and is available at http://www.nos3.org.

 Introduction

The NASA Independent Verification and Valida-

tion (IV&V) Program's mission is to provide assur-

ance that safety- and mission-critical software will

operate reliably and safely. NASA IV&V provides

this service by employing a set of documented tech-

nical methods to the customers' system and software

requirements, design, code, and tests. In 2009, the

NASA IV&V Program established a simulation

development team, the Independent Test Capability

(ITC). The ITC team is responsible for developing

and maintaining test environments that are capable

of exercising mission and safety critical software.

The IV&V teams are able to gain an increased

Corresponding Author: Max Spolaor – max.spolaor@nasa.gov

Publication History: Submitted – 03/27/18; Revision Accepted – 12/12/18; Published – 01/08/19

mailto:max.spolaor@nasa.gov

Geletko, D. M. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3, p. 790

understanding of the software execution and behav-

iors, exercise the system under adverse conditions,

and inject faults into the system to gain insight into

how the software will respond using ITC simulation

environments. This capability thus enables the NASA

IV&V Program to perform more thorough analyses

of unit, build, and system level software tests and op-

erational test procedures.

Since its inception, the ITC team has observed the

benefits of software-only simulation environments to

the IV&V Program and its customers, but has also

witnessed firsthand the benefits to software develop-

ment organizations. ITC-developed software-only

simulation environments have enabled risk reduction

testing, provided earlier execution of operational

tests, reduced the development organization’s reli-

ance on hardware, and increased available test re-

sources on large spacecraft missions, such as Global

Precipitation Measurement (GPM) and the James

Webb Space Telescope (JWST). In addition to these

large missions, the ITC team has applied its technol-

ogies to small satellites, which suffer from some of

the same challenges, such as long hardware lead

times and software development/testing resources.

1.1. NASA CubeSat Launch Initiative

The NASA CubeSat Launch Initiative (CSLI)

provides low-cost access to space for small satellites

developed by NASA Centers and programs, educa-

tional institutions, and non-profit organizations.

NASA's investment in such technology is two-fold.

First, the small satellite platform provides advanced

educational opportunities for students, teachers, and

faculty to help attract and retain students in science,

technology, engineering, and math (STEM) disci-

plines. Second, CSLI promotes partnerships between

institutions to develop and mature low-cost technolo-

gies and pathfinders for the benefit of NASA pro-

grams and projects. Since its inception, the CSLI has

selected 152 small satellite missions from 85 unique

organizations. However, despite the increase of small

satellite opportunities made available through CSLI,

there remains a considerable amount of risk to these

missions. Most of the standard risks involving cost

and schedule apply, and are amplified, when dealing

with the small-scale and fast-paced environment.

1.2. Simulation-to-Flight 1

As a result of the demonstrated successes of

software-only simulation environments and the op-

portunity to launch a spacecraft to demonstrate tech-

nologies that benefit NASA programs through CSLI,

the NASA IV&V Program and West Virginia Uni-

versity (WVU) collaborated to develop a 3U CubeSat

mission, Simulation-to-Flight 1 (STF-1; Morris et al.,

2016). The primary purpose of STF-1 was to deter-

mine and demonstrate the value of developing, utiliz-

ing, and maintaining a software-only simulation dur-

ing the project lifecycle. However, a diverse set of

science experiments, provided by WVU, allowed the

project to expand the mission’s overall objective. The

instruments include a cluster of Micro Electro-

Mechanical Systems (MEMS) Inertial Measurement

Units (IMU) to produce attitude knowledge (Green-

heck et al., 2014); a space-weather experiment in-

cluding a Geiger counter and Langmuir probe

(Vassiliadis et al., 2014); a III-V Nitride-based mate-

rials optoelectronics experiment (Pachol et al., 2016);

and a Novatel OEM615 GPS coupled with advanced

algorithms for precise orbit determination (Watson et

al., 2016). The science experiments enhanced the

mission capabilities, as well as providing a diverse

set of instruments to assess how the simulator would

support science instrument development. Figure 1

provides an illustration of the various components

and subsystems of the STF-1 CubeSat mission.

1.3. NASA Operational Simulator for Small Satel-

lites

The STF-1 mission resulted in the development

of a software simulation framework named the

NASA Operational Simulator for Small Satellites

(NOS3). The goal of NOS3 is to enhance small satel-

lite software development, testing, and training. With

NOS3, the flight software executes as if it were oper-

ating in space. NOS3 provides the flight software

with representative real-world simulated data inputs

NASA Operational Simulator for Small Satellites (NOS3): The STF-1 CubeSat Case Study

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3, p. 791

that it would expect during nominal on-orbit opera-

tions. Some NOS3 features include:

 enabling multiple developers to build and test

flight software with simulated hardware mod-

els;

 serving as an interface simulator for science

instrument/payload teams to communicate

with prior to hardware integration;

 supporting software development activities;

 enabling hardware integration to parallel

software development;

 providing automated testing framework;

 increasing available test resources; and

 enabling operation of the simulated spacecraft

using the ground software command and te-

lemetry databases.

 NOS3 Overview

An in-depth analysis of the NOS3 and of its sup-

porting products is presented in the following four

subsections. Section 2.1 describes the high-level

simulator architecture including software interfaces,

simulated hardware models, and actual flight hard-

ware. Section 2.2 describes the set of software tools

that support the NOS3 simulation architecture. These

software tools consist of the NASA Operational Sim-

ulator (NOS) messaging middleware (NOS Engine),

the open-source “42” general purpose multi-body,

multi-spacecraft dynamic simulation (Stoneking,

2008), the open-source COSMOS User Interface for

Command and Control of Embedded Systems (Mel-

ton, 2016), and the open-source core Flight System

Figure 1. View of the components and subsystems of the STF-1 CubeSat, all of which have been simulated in NOS3.

Geletko, D. M. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3, p. 792

(cFS; Wilmot, 2005), a platform- and project-

independent, reusable software framework inclusive

of a set of reusable software applications. Section 2.3

examines additional ad-hoc software that was devel-

oped to support and complement NOS3. Section 2.4

explores how NOS3 is deployed in a ready-to-run en-

vironment.

2.1. NOS3 Simulator Architecture

The flexible configuration of the NOS3 simula-

tion architecture as compared to a typical flight sys-

tem is illustrated in Figure 2. The “Flight Configura-

tion” column provides a typical small satellite flight

configuration for the flight software (i.e., flight appli-

cations, flight libraries, drivers, and flight hardware).

The flight software may use flight libraries that pro-

vide common functionality. The flight software and

libraries use hardware drivers, defined as software

components communicating directly with the hard-

ware. This is usually accomplished via reading and

writing hardware registers, and often using a bus pro-

tocol such as Universal Asynchronous Receive and

Transmit (UART), Inter-Integrated Circuit (I2C), and

Serial Peripheral Interface (SPI), or simply applying

general purpose input/output (GPIO) signals.

A typical satellite system has numerous hardware

interfaces controlled through an on-board computer.

These may include hardware interfaces with electri-

cal power systems, radio frequency communication

systems, science experiment payloads, orbit and atti-

tude sensing and control systems, and others. The

goal of NOS3 is to substitute simulations in place of

some or all of these hardware components.

The “Simulation Configuration” column demon-

strates how NOS3 can be used in place of the actual

hardware. It should be noted that the NOS3 architec-

ture provides users with the flexibility to execute

flight software with some or all of the hardware com-

ponents replaced by a software simulation. This sub-

stitution occurs at the functional call interface. Per-

forming the substitution is as simple as linking the

flight software against a NOS3 library to replace the

hardware driver library. NOS3 uses a client-server

architecture and, as such, a stand-alone NOS3 server

manages the communications between flight software

and various hardware components. The stand-alone

server maintains the components, referred to as

nodes, that are attached to each hardware bus, the

communications protocol used, etc. Additionally,

NOS3 includes a logging mechanism so that commu-

nications between simulation components can be

Figure 2. NOS3 architecture, illustrating both its Flight and Simulation Configuration. Note that the Simulation Configuration

is identical to the Flight Configuration, with the exception of the interface to flight, or simulated Flight Hardware.

NASA Operational Simulator for Small Satellites (NOS3): The STF-1 CubeSat Case Study

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3, p. 793

monitored in real-time or in post-analysis to ensure

that the data is passed correctly.

The hardware components that are being substi-

tuted with software simulations can be modeled at the

fidelity required for the tests being performed. Some

of the simulators written for STF-1 simply imple-

mented pre-packaged data responses to commands

from the on-board computer, while others required

knowledge of the environment or other hardware

components. For example, a GPS simulator will need

to know the spacecraft position in orbit, therefore,

this data must be generated dynamically. Simulators

requiring this type of dynamic data use a connection

to the “42” software (see Section 2.2.4) to collect the

necessary data, and then proceed to package the re-

sponse in the proper hardware format. In addition, the

simulated components are able to be manipulated by

the user, allowing fault testing that typically is not

possible, or too dangerous to attempt in a hardware-

only test.

2.2. NOS3 Software Components

NOS3 integrates a set of existing open-source

software components as well as ITC developed soft-

ware components to create a full spacecraft simula-

tion platform. Figure 3 illustrates how these software

components are interconnected within NOS3. The

following subsections examine each of these software

components and their respective purpose (i.e., NOS

Engine, COSMOS, cFS Flight Software, “42” Dy-

namics Simulator, Hardware Simulations).

2.2.1. Simulation Middleware: NASA Operational

Simulator Engine

One of the primary software components of the

NOS3 simulator is the NOS Engine simulation mid-

dleware that abstracts the hardware and connects the

flight software with the simulated dynamics. The

NOS Engine is an in-house developed software suite

that provides a library of functions to simulate the

hardware communication protocols that are utilized

by the flight software. As discussed in the previous

sections, the hardware driver libraries are replaced

with NOS Engine libraries, using the same function

calls. NOS Engine also provides support for various

underlying protocols such as TCP/IP, inter-process

communication protocol (IPC), and shared memory

to transport software bus messages that represent the

actual hardware bus communication. This functional-

ity provides a number of unique advantages: extreme-

Figure 3. NOS3 components showing connections between ground station software (COSMOS),

Flight Software (cFS), and Simulators/Dynamics (42).

Geletko, D. M. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3, p. 794

ly fast communications; shared memory on a single

computer running the flight software and the software

simulators; and distributed processing such as

TCP/IP on multiple computers, one running the flight

software and others running the software simulators

or interfacing with flight hardware, and other config-

urations based on development and testing require-

ments.

One of the challenges of simulated communica-

tions protocols (e.g., UART, I2C, SPI, etc.) is being

able to represent their hardware time synchronization

clocks within a software-only environment. Time

synchronization clocks are used on small satellites for

coordinating spacecraft time with ground time, coor-

dinating time between various spacecraft compo-

nents, such as the on-board computer software and

the radio frequency communication component, and

providing timing signals for clocks that coordinate

communication using protocols such as I2C and SPI.

To overcome such a challenge, the NOS Engine li-

brary contains methods to manipulate and distribute

time between various components that are connected

via software busses in place of what would normally

be hardware busses. For example, within NOS3, the

NOS Engine is used to control epochs and periodic

clock signals.

2.2.2. Ground System Software: COSMOS

COSMOS (Melton, 2016), an open-source com-

mand and control software package, was integrated

into NOS3 to allow end-to-end testing of STF-1 and

to enable the “test as we fly, fly as we test” philoso-

phy. COSMOS provides a sophisticated framework

for command and control of satellites and other em-

bedded systems. COSMOS was integrated into NOS3

using a collection of text configuration files. A single

text file provides the TCP/IP socket configuration

information, while additional text files are auto-

generated to define the byte patterns representing te-

lemetry and command data sent from the spacecraft

to the ground, and vice versa.

NOS3 includes several COSMOS enhancements

to automatically generate and keep the data descrip-

tions in the embedded code synchronized with the

data descriptions in the COSMOS command and te-

lemetry files. Data analysis mechanisms, in addition

to what is provided with COSMOS, were required for

the STF-1 mission and have been built as Ruby lan-

guage extensions to COSMOS. These extensions are

also available in NOS3 and provide some of the post-

processing data reduction for STF-1. It should be

noted that despite COSMOS being already integrated

into the NOS3 framework, it is not architecturally re-

quired, and could be replaced by a similar command

and control software that supports UDP connection.

2.2.3. Flight Software: Core Flight System

The NASA-developed core Flight System (cFS;

Wilmot, 2005) is an open-source solution for space-

craft flight software, with flight heritage on numerous

large and small NASA missions, such as the Global

Precipitation Measurement (GPM) and the Lunar

Atmosphere Dust and Environment Explorer (LAD-

EE). The cFS application layer includes a set of reus-

able software applications to support flight software

development. The reusable applications are tailored

to the mission requirements using tables, while new

applications can also be developed for any mission-

specific requirement that is not directly provided by

cFS. The software supports table driven applications,

allowing applications to be tuned or changed during

development and at runtime, by simply changing the

tables’ values without changing the code base. An-

other cFS component is a set of common services

named the Core Flight Executive layer, that are typi-

cally needed by satellite systems, such as time keep-

ing and timers, executive services for applications,

software bus messaging, and event reporting services.

The cFS is run on top of a lower level operating sys-

tem framework, the Operating System Abstraction

Layer (OSAL; Yanchik, 2007), which isolates em-

bedded software from the real-time operating system

by providing users with an Application Program In-

terface (API). OSAL libraries are available for a

range of operating systems, including Linux, which

allows NOS3 libraries to be substituted at build time

without any changes to the other cFS’s layers. The

Platform Support Package (PSP) is the cFS compo-

nent that provides the interface to the hardware driv-

ers for a specific on-board computer. NOS3 is capable

NASA Operational Simulator for Small Satellites (NOS3): The STF-1 CubeSat Case Study

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3, p. 795

of substituting PSP libraries, thus allowing the cFS to

use standard function calls for various protocols (e.g.,

UART, I2C) to effectively communicate with the

software simulations. The STF-1 mission, and there-

fore NOS3, made use of cFS not just for its flight her-

itage reliability, but also for this ability to substitute

libraries that share a common API used by the flight

software. It should be noted that it is architecturally

possible to use NOS3 without using cFS and OSAL.

If cFS is not used, an interface library would need to

be written to utilize the NOS Engine API.

2.2.4. Flight Dynamics: “42”

A fundamental consideration in developing a

small satellite simulator is how to provide realistic

hardware signals reacting to the dynamically chang-

ing spacecraft environment. Specifically, as the

spacecraft travels, variables such as its position, ve-

locity, orientation, solar radiation direction and inten-

sity, and magnetic field direction and intensity

change over time. While the actual hardware signals

corresponding to dynamic inputs can be determined

from hardware data sheets and user manuals, the dy-

namic inputs must also be identified for a correct

simulator development.

To provide a complete framework for spacecraft

simulation, including the specific hardware simula-

tions needed for the STF-1 project, we carried out a

comprehensive analysis of different dynamic envi-

ronmental data providers within NOS3. After a thor-

ough evaluation of numerous external solutions as

well as the possibility of in-house development op-

tions, we chose the “42” software – a general pur-

pose, multi-body, multi-spacecraft simulation – to

provide dynamic environmental data (Stoneking,

2008). An open-source software solution, “42” pro-

vides the ability to propagate and predict the orbit

and orientation of spacecraft, by computing the forc-

es affecting these orbital parameters, secondary

gravitational effects, aerodynamic drag, solar radia-

tion pressure, magnetic field interaction, and others.

2.2.5. Hardware Simulations

Several simulators have been developed for the

hardware components used on STF-1, such as the

GPS receiver, the antenna deployment system, and

the electrical power system. While these simulators

have features that are specific to the hardware com-

ponents used on STF-1, they also present several el-

ements useful to other satellite developers. For in-

stance, they provide detailed, practical examples

showing how simulators can be written for hardware

components, how to use the NOS Engine communi-

cation busses, and how to receive dynamic data from

“42”. Furthermore, NOS3 supplies a common simula-

tion development framework for adding custom mis-

sion simulators; it includes functionalities for logging

and text file configuration of simulators, it facilitates

integrating custom mission capabilities, and it assists

with integrating environmental data providers such as

“42”. The framework also allows the user to create

software simulators of a hardware component early in

the mission lifecycle, to support flight software de-

velopment and testing. These simulators can be writ-

ten by referencing hardware interface control docu-

ments (ICDs) or data sheets, and further augmented

with characteristic data from the hardware, when

available.

2.3. NOS3 Supporting Software

In additional to the core NOS3 simulation compo-

nents, several other software components were de-

veloped and are included with NOS3 to provide a

more complete environment for operational use. Two

of these components are described in the following

subsections.

2.3.1. Mission Planning Software

An important part of satellite operations is

mission planning. For satellite systems, this can in-

clude a multitude of tasks, such as ground contact

planning, power planning, planning when science

Geletko, D. M. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3, p. 796

data collection will take place, as well as data reduc-

tion once data is returned from the satellite. In the

case of STF-1, ground contact planning was the pri-

mary procedure that needed to be formulated. In par-

ticular, when a ground contact takes place, the STF-1

operations team must be in communication with the

radio antenna team at the antenna site to ensure that

the proper data paths are configured and de-

configured for the contact, and that the commanding

and telemetry receipt planned for the contact time is

planned and executed as quickly and efficiently as

possible. Prior to the contact time, necessary person-

nel at the antenna and the STF-1 operations sites need

to be adequately reserved to avoid scheduling con-

flicts. For STF-1 and other small satellites, ground

contact occurs a few times per day with a typical du-

ration of just a few minutes. The specific occurrence

of these contacts can be accurately predicted using

well-understood concepts of orbital mechanics cou-

pled with a satellite’s orbital elements, such as the

two-line element (TLE) sets prepared by the United

States Air Force and the North American Aerospace

Defense Command.

NOS3 provides a collection of Python utilities,

known as Orbit, Inview, and Power Planning, that

can generate charts predicting accurate satellite visi-

bility times from any location on Earth and when a

satellite is in sunlight, Earth penumbra, and Earth

umbra. The tools use TLE sets as their source of sat-

ellite orbital elements, and can generate tabular

ephemeris data with rows indicating date and time,

sub-satellite location on the earth, and satellite alti-

tude. These data can be used for post-processing sat-

ellite data to correlate sensor observations with satel-

lite position. For STF-1, science data such as radia-

tion counts from the Geiger counter and plasma field

data will be correlated with satellite position during

post-collection data reduction activities.

2.3.2. NOS3 Unit Test Framework

The benefits of unit and integration-level tests are

well known, providing confidence that developed

software operates as intended and future code chang-

es do not cause unforeseen errors in other parts of the

system (regression testing). The realization of the

importance of testing early and often led us to include

mature unit test frameworks for both the flight soft-

ware and the simulators. We adopted the Google

GTest framework for the NOS3 simulators and the

NASA UT-Assert library for the STF-1 flight soft-

ware. The latter is the standard unit test framework

for OSAL and core cFS applications.

Various additions and improvements were made

to the UT-Assert library to simplify usage, such as

integration into the build system and custom-built

macros to simplify the process of creating unit tests.

In addition, we created build targets for the GNU

coverage testing tool and the Linux Test Program ex-

tension graphical front-end to allow the team to gen-

erate coverage reports and identify risk areas to im-

prove testing. The separation of the hardware library

in the STF-1 flight software architecture allowed sep-

aration of testing at both the application and hard-

ware levels. For example, we tested applications with

high-level inputs (commands, software bus messages,

etc.), while a framework was created to stub hard-

ware calls and allow the tester to provide appropriate

low-level bus data for detailed hardware library test-

ing.

Another important improvement to the unit test

framework was the ability to run the unit tests on the

STF-1 development and/or flight boards. Although

testing in the NOS3 simulation environment has

proven to be beneficial, executing tests on the target

architecture helped identify additional problems prior

to hardware testing, further reducing integration

times.

The easy-to-use unit test framework allowed de-

velopers to write tests in parallel to application de-

velopment, uncovering issues early in the develop-

ment cycle. This process saved integration time, in

addition to code review time, since many bugs were

already resolved by the developer prior to reaching

those stages of the life cycle.

2.4. Ready-to-Run Virtual Machines

The NOS3 collection of software components is

conveniently packaged as a ready-to-run virtual ma-

chine, reducing the overhead associated with in-

stalling and configuring each software component.

NASA Operational Simulator for Small Satellites (NOS3): The STF-1 CubeSat Case Study

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3, p. 797

NOS3 can be distributed as an Oracle VirtualBox vir-

tual machine image or as a collection of command

scripts that are used to recreate and modify a virtual

machine image. This allows users to have a common

development and testing environment, further reduc-

ing risk to the mission. The standard guest operating

system used by NOS3 is Ubuntu Linux, but the virtu-

al machine can run using Oracle VirtualBox on Win-

dows, Mac, or Linux computers.

 Results: the STF-1 CubeSat

At the time of this writing, the STF-1 CubeSat

mission software development and testing has been

completed, and the spacecraft has been delivered for

launch in 2018. Section 3.1 provides an overview of

the software complexity of the STF-1 mission, while

the remaining sections, Sections 3.2 to 3.4, highlight

the three major benefits of using NOS3 that were wit-

nessed on the STF-1 mission.

3.1. STF-1 Software Complexity Overview

As a metric to assess the overall software com-

plexity, the Source-Lines-of-Code (SLOC) utility

(SLOCCount) was executed against the STF-1 flight

software. This utility measures the size of a computer

program by counting the number of lines in the pro-

gram’s source code. Additionally, the results of the

SLOC utility were used as an indicator of software

size for the Constructive Cost Model, a procedural

cost estimation model. Table 1 lists the STF-1 SLOC

count, with the RTOS and drivers not included be-

cause they were vendor-provided. Of the 132,000 to-

tal SLOC, 25% of the software was newly developed

for the STF-1 mission. Using the Constructive Cost

Model, SLOC Count estimates that the STF-1 appli-

cations take 8.25 person-months for development, but

this metric does not take into account unit testing,

integration testing, and access to flight hardware for

testing, which are typically the bottlenecks for small

satellites and space missions.

Operationally, the STF-1 flight software is not

trivial, due to its semi-autonomous on-orbit function-

alities that are needed to perform science experi-

ments, record science data, and transmit the data to

the ground station during downlink periods of just a

few minutes long. The flight software must be able to

simultaneously provide the following core functional-

ities: 1) operate without interaction/commanding

from the ground station; 2) it must be aware of its

power level status for executing time-lapse science

experiments; 3) it must start, stop, and pause experi-

ments; 4) it is responsible for communicating with

various STF-1 hardware components such as sensors,

radio, camera, and the deployable antenna. This flight

software complexity results in increased mission-risk

with respect to development and testing schedule.

This type of embedded hardware testing is not possi-

ble without hardware-in-the-loop availability with the

full ground-system software.

Table 1. STF-1 Flight Software SLOC Counts*

Software Component Description SLOC

Core Flight System (CFS) +

Platform Support Package (PSP)

GSFC reusable flight software frame-

work
50 K + 7 K

Operating System Abstraction Layer (OSAL)
GSFC reusable operating system abstraction

layer API
41 K

STF-1 Mission Specific Applications Newly developed flight software 34 K

TOTAL 132 K

*STF-1 contained 34K SLOC (24%) of newly developed software.

Geletko, D. M. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3, p. 798

3.2. Reduced Hardware Reliance

NOS3 enabled multiple STF-1 developers to work

in parallel without monopolizing either a single simu-

lator, engineering test unit, or spacecraft flight com-

puter, thus reducing the STF-1 mission’s reliance on

hardware. For example, while one engineer was de-

veloping the electrical power system software, anoth-

er engineer was developing the communications

software. Neither engineer needed to use the hard-

ware for their development and initial testing.

NOS3 was used extensively by the STF-1 soft-

ware development team for all aspects of flight soft-

ware development and testing. Over the course of the

three person-months in which most of STF-1 soft-

ware development was accomplished, each team

member maintained their own NOS3 virtual environ-

ment. The virtual environment provided realistic in-

puts and feedback to the flight software while under

development.

Additionally, NOS3 provided a suitable test envi-

ronment to support STF-1 flight software integration

testing. Similar to many other small satellite mis-

sions, the STF-1 mission hardware was expensive,

limited in supply with few spares, and it needed to be

configured and set up quickly to support testing.

NOS3 provided the ability to develop and test most

flight software functionality without requiring a

hardware-in-the-loop test configuration. Hardware is

still needed to test certain performance and timing

requirements. Without NOS3, STF-1 developers

would not have been able to develop and test soft-

ware applications in parallel to these activities. As a

result, it would have been very difficult to maintain

the flight software development and test schedule.

3.3. Reduced Risk and Provided a Living Training

Package

The effortless deployment process of the NOS3

software allowed us to set up and configure a large

number of medium fidelity simulation environments

to cross-train personnel and to support risk reduction

testing during the STF-1 software development. For

example, NOS3 was provided to multiple interns dur-

ing the summer months to support mission under-

standing, static analyses, and additional software test-

ing of custom STF-1 software applications. The addi-

tional simulation resources allowed the team to test

how the various STF-1 software applications would

respond to adverse conditions, thus ensuring STF-1

software robustness. One of the most critical STF-1

software applications, the manager application, which

is responsible for semi-automating the spacecraft op-

erations was exhaustively tested, using NOS3. NOS3

also allows the tester to introduce fault conditions

that are too dangerous or expensive to test using

hardware, which further reduced mission risk and

raised confidence in the flight software.

3.4. Improved the Software Development Sched-

ule

NOS3 was able to increase the STF-1 develop-

ment team’s control of the software development

schedule and to demonstrate how future software de-

velopment effort schedules can be shifted ahead of

the receipt of hardware components. Table 2 reports

the lead times associated with the major STF-1 flight

components as compared with the associated devel-

opment time for the NOS3 hardware simulator. It is

evident that the level of effort required to develop a

hardware-equivalent simulator for the STF-1 mission

with NOS3 was rather minimal. Furthermore, a NOS3

hardware simulator can be scoped, planned (effort,

simulator fidelity, etc.), and efforted, whereas hard-

ware lead times from vendors change and slip regu-

larly. NOS3 allowed STF-1 software development to

begin as scheduled, rather than after the hardware

arrived.

 Conclusion

The primary purpose of the STF-1 CubeSat mis-

sion was to develop a software-only simulation

framework and supporting tools that would support

STF-1 as well as supporting future small satellite

missions. The resulting byproduct of STF-1 is an

open-source, software environment known as NOS3.

The NOS3 architecture was designed to be flexible

and allow multiple configuration and deployment

options. NOS3 conveniently packages a set of open-

NASA Operational Simulator for Small Satellites (NOS3): The STF-1 CubeSat Case Study

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3, p. 799

source tools (cFS, COSMOS, and “42” dynamics

simulator) and a set of STF-1 specific hardware

simulators to provide a virtual spacecraft environ-

ment that is easy to configure and deploy to end-

users. NOS3 has demonstrated its extreme value to

the STF-1 mission by reducing hardware reliance,

increasing available test resources, serving as a train-

ing and risk reduction platform, enabling parallel

software development activities that shorten cycles

and reduce developer costs, and alleviating schedule

pressures due to slips in hardware component deliver-

ies. We plan to continue NOS3 development to sup-

port future missions. As other teams adopt NOS3 for

their missions, additional hardware simulators can be

added to the NOS3 simulation library. (NOS3 can cur-

rently be found at www.nos3.org, and is available

under the NASA Open Source License. To inquire

about the NOS3 software, e-mail the team at sup-

port@nos3.org, providing a brief project introduc-

tion.)

Acknowledgements

The STF-1 development team would like to thank

the NASA IV&V Program, the West Virginia Uni-

versity science teams, TMC2 Technologies, the West

Virginia Space Grant Consortium, and the West Vir-

ginia High Technology Consortium. Without these

contributors, our team would not have built STF-1,

“West Virginia’s First Spacecraft”. Thank you as

well to the Goddard Space Flight Center Dellingr, Ice

Cube, and Ceres CubeSat missions for their collabo-

ration and support.

References

Greenheck, D. R. et al. (2014): Design and Testing of

a Low-Cost MEMS IMU Cluster for SmallSat

Applications, presented at 28th Annu. AI-

AA/USU Conf. on Small Satellites, Logan, UT,

US, Aug. 4–7.

Melton, R. (2016): Ball Aerospace COSMOS Open

Source Command and Control System, presented

at 30th Annu. AIAA/USU Conf. on Small Satel-

lites, Logan, UT, US, Aug. 8–11.

Morris, J. et al. (2016): Simulation-to-Flight 1 (STF-

1): A Mission to Enable CubeSat Software-based

Verification and Validation, presented at 54th

AIAA Aerospace Sciences Mtg., San Diego, CA,

US, Jan. 4–8. Paper 6.2016-1464.

Pachol, M. et al. (2016): LOCC: Enabling the Char-

acterization of On-Orbit, Minimally Shielded

LEDs, presented at 30th Annu. AIAA/USU Conf.

on Small Satellites, Logan, UT, US, Aug. 8–11.

Paper SSC16-P3-05.

SLOCCount. Available at: https://www.dwheeler.com/

sloccount/ (accessed Oct. 16, 2017).

Stoneking, Eric (2008): A Computer Program Called

“42” Simulates the Attitudes and Trajectories of

Multiple Spacecraft Flying in Formation Any-

Table 2. STF-1 Component Lead Time, Compared to NOS3 Software Simulator Development Time*

Hardware Component STF-1 Lead Time NOS3 Sim. Development Time

Antenna Deployment System 6 months 2 weeks

Electrical Power System 10 months 3 weeks

GPS Receiver 2 weeks 2 weeks

Magnetometer 6 months 1 week

UHF Radio 7 months 1 month

Experimental Payload 12+ months 1 week

*By reducing lead time, flight software development can start earlier in the mission.

Geletko, D. M. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 7, No. 3, p. 800

where in the Solar System, in NASA Tech Briefs,

Dec. 2008. Doc. ID 20080048040.

Vassiliadis, D. et al. (2014): Undergraduate Student-

built Experiments in Sounding-Rocket and Bal-

loon Campaign, presented at AGU Fall Mtg., San

Francisco, CA, US, Dec. 15–19. Paper ED21C-

3456.

Watson, R., Sivaneri, V., and Gross, J. (2016): Per-

formance Evaluation of Tightly-Coupled GNSS

Precise Point Positioning Inertial Navigation Sys-

tem Integration in a Simulation Environment, in

Proc. of the AIAA Guidance, Navigation and

Control Conf. (GNC), San Diego, CA, US, Jan.

4–8.

Wilmot, J. (2005): A Core Flight Software System, in

Proc. of the 3rd IEEE/ACM/IFIP Int. Conf. on

Hardware/Software Codesign and System Synthe-

sis, pp. 13–14.

Yanchik, N. J. (2007): Operating System Abstraction

Layer, presented at Flight Software Workshop,

Laurel, MD, US, Nov. 5–6. Doc. ID

20080040870.

