

www.adeepakpublishing.com www. JoSSonline.com

Saborio Borbon, R. J. et al. (2022): JoSS, Vol. 11, No. 1, pp. 1109–

1123

(Peer-reviewed article available at www.jossonline.com)

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1109

Firmware Development for an Open-Source
Small Satellite Amateur Radio Transceiver

Ricardo J. Saborio Borbon, E. Glenn Lightsey,

Sterling Peet, and Aaron J. McDaniel
Georgia Institute of Technology

Atlanta, GA US

Abstract

The communications subsystem is a vital component of every space mission. However, the necessary hard-

ware and infrastructure often consume a significant portion of the allotted budget for a project. This poses a

problem for university teams developing small satellites with limited funds. Open-source projects like Earth im-

agery company Planet’s OpenLST integrated hardware transceiver have attempted to solve this issue. While the

OpenLST project addresses the hardware cost issue, it does not provide an affordable solution for the infrastruc-

ture problem. For this paper, a series of firmware modifications were completed for the OpenLST transceiver to

allow for compatibility with amateur packet radio protocols. By implementing well-known protocols like AX.25,

it is possible to leverage the existing infrastructure of amateur radio to reduce costs. The paper outlines the key

differences between the existing protocol and AX.25, how these were addressed, and the overall structure of the

final firmware modifications.

 Introduction

Small satellites have become an attractive solution

for teams looking for an affordable testbed for mission

concepts and technology demonstrations. However,

space-grade components come at an unavoidable pre-

mium that comprises a significant portion of a mis-

sion’s cost. This is particularly true in the case of the

communications subsystem which, in addition to the

hardware costs, requires a significant additional in-

vestment to develop the necessary ground station in-

frastructure.

Earth-imaging company Planet has attempted to

address the small satellite communications issue by

releasing an open-source version of their flight-proven

UHF radio (Klofas, 2018). The product, dubbed the

OpenLST, is an integrated hardware transceiver made

purely of inexpensive, off-the-shelf components. Nev-

ertheless, the OpenLST uses Planet’s proprietary com-

munications protocol and requires a dedicated ground

station using an OpenLST receiver. Therefore, this

product only partially solves the small satellite com-

munications issue.

The second half of the solution is provided by am-

ateur packet radio. If a small satellite radio were to use

an amateur packet radio protocol like AX.25, it could

leverage the existing amateur radio stations worldwide

Corresponding Author: Ricardo J. Saborio Borbon – ricardo.j.saborio@gmail.com

Publication History: Submitted – 07/24/21; Revision Accepted – 12/15/21; Published – 02/08/22

Saborio Borbon, R. J. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1110

and bypass the requirement for dedicated ground sta-

tion infrastructure. Thus, a full solution to the small

satellite communications problem would combine off-

the-shelf flight-proven hardware, like OpenLST, with

an amateur packet radio protocol like AX.25. This ar-

ticle describes a full solution to the small satellite com-

munications problem that was derived at Georgia

Tech's Space Systems Design Laboratory by modify-

ing the firmware on Planet’s OpenLST to allow for

AX.25 compatibility.

 Hardware, Firmware, and Protocols Overview

This section outlines the main features of the

OpenLST hardware, as well as the key characteristics

of the OpenLST and AX.25 protocols in terms of their

protocol specifications and frame formatting. The

logic behind the flow of information in each protocol

is also addressed.

2.1. OpenLST Integrated Hardware Transceiver

The OpenLST is an integrated hardware radio

based off Texas Instruments’ CC1110 Low-Power RF

Transceiver chip. This integrated circuit (IC) includes

an Intel 8051 MCU core that allows for onboard data

processing and provides a range of peripherals includ-

ing ADCs, GPIO pins, timers, and UART ports. In ad-

dition, the chip features an onboard packet engine that

handles the detection and parsing of incoming mes-

sages, as long as the message format adheres to the

CC1110 standards. The hardware interfaces consist of

two UART ports, three debug GPIO pins, and one

SMA port.

The OpenLST release also features a Python

ground station toolbox to interface with the radio. This

includes custom commands to downlink telemetry

from the OpenLST board, relay information between

radios, and configure the transceiver itself. More im-

portantly, the toolbox includes the functionality neces-

sary for OTA (over-the-air) reprogramming of the

firmware.

2.1.1. Protocol Specifications

The protocol specifications of the OpenLST are di-

vided into the specifications for the physical connec-

tion with the host computer and those for the radio fre-

quency (RF) link with other radios. The interface with

the host computer consists of two UART connections

configured with eight data bits, no parity, one high

stop bit, one low start bit, and flow control enabled.

Data is sent in little-endian order at a baud rate of

115200 baud.

In the case of the RF interface, the default config-

uration of the OpenLST uses 2-FSK modulation with

a carrier frequency of 437 MHz and a deviation of 3.71

kHz to transmit and receive data. The bits are NRZ(L)

encoded and are sent MSb first (except for the protocol

header bytes) at a rate of 7416 baud. In addition, data

whitening and FEC encoding is used to evenly distrib-

ute the power of the transmitted bitstream.

2.1.2. Frame Formatting

The frame formatting of the OpenLST is divided

into two separate frame structures: one for the host

computer interface (referred to as the OpenLST proto-

col) and one for the RF interface (referred to as the

CC1110 protocol). The OpenLST protocol frame for-

mat consists of a variable length packet with a fixed-

length eight-byte header. The frame structure decom-

position is shown in Figure 1. The frame is transmitted

LSB first.

Figure 1. OpenLST protocol frame structure.

Firmware Development for an Open-Source Small Satellite Amateur Radio Transceiver

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1111

Frame synchronization is achieved with the two-

byte sequence 692216 given by B0 and B1. A non-in-

clusive length byte, given by B2, stores the number of

bytes that come after B0-B2. A 16-bit HWID is split

into B3 and B4. Each OpenLST board has a unique

HWID that is used to address the packet to a specific

device. A 16-bit sequence number, split into B5 and

B6, serves as an identification number used to map

command replies to a particular packet. The destina-

tion field, given by B7, is used to distinguish between

packets addressed to the CC1110 and those addressed

to the host computer. The remaining data field varies

in length and contains the packet data to be relayed be-

tween the radios. The first byte in this segment, or B8,

will always correspond to the command number.

In the case of the CC1110 protocol, a frame with a

variable length packet, a ten-byte header, and a four-

byte footer is implemented. The frame structure is in-

tended to be compatible with the CC1110 packet en-

gine to allow for automation of the data reception pro-

cess. The frame header features a four-byte preamble,

and the footer features a two-byte CRC for data integ-

rity checks. The frame is transmitted LSB first, except

for the SYNC byte sequence which is transmitted

MSB first. Header bits are transmitted LSb first, but

the bits in B9-BN are transmitted MSb first. The de-

composition of the CC1110 frame structure is shown

in Figure 2.

The preamble bytes required for clock synchroni-

zation consist of the AA16 sequence repeated four

times over B0-B3. Byte synchronization is achieved

by using a four-byte SYNC word consisting of the

two-byte sequence D39116 repeated twice using B4-

B7. A non-inclusive length byte is stored in B8, which

includes the number of bytes that follow B0-B8. A se-

ries of miscellaneous flags used for message forward-

ing out of the UART ports are stored in B9.

The packet itself is stored in B10-B(N-4), where N

denotes the total number of bytes in the frame. The 16-

bit HWID of the OpenLST is stored in BN-3 and BN-

2, whereas the 16-bit CRC-16 is split between BN-1

and BN.

2.1.3. Data Flow

The flow of information in the OpenLST can be

divided into two segments: one focusing on the high-

level data flow between radios and host computers,

and one focusing on the packing/unpacking of packet

data during transmission/reception. The former can be

described in terms of a network consisting of four

nodes as shown in Figure 3.

The network shown consists of two nodes acting

as the local device and two nodes acting as the remote

device. Nodes 1 and 4 correspond to the host comput-

ers, whereas Nodes 2 and 3 correspond to OpenLST

boards with distinct HWIDs. Connections to Nodes 1

and 4 consist of UART connections, while connec-

tions between Nodes 2 and 3 consist of an RF link. The

flow of information in the network is controlled via the

HWID and destination fields of the OpenLST proto-

col. The HWID will determine whether the message is

sent to the local or remote OpenLST board and the des-

tination field will indicate if the message should be

processed by the CC1110 MCU or the host computer,

allowing for direct communication with each node in

the network.

The segment of the data flow involving the pack-

ing and unpacking of information can be described us-

ing the block diagram included in Figure 4. The logic

Figure 2. CC1110 protocol frame structure.

Saborio Borbon, R. J. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1112

behind this flow of information is governed by the fol-

lowing conditions:

1. The OpenLST will only respond to messages ad-

dressed to its own HWID. If there is a HWID

mismatch, outgoing messages will be forwarded

out of the RF link and incoming messages out of

the serial link.

2. The CC1110 MCU will only process messages

with a destination field addressed to the

OpenLST board. If there is a destination mis-

match, incoming messages will be forwarded out

of the UART port and outgoing messages out of

the RF link. A destination field sequence of 0116

is used for the CC1110 MCU and a sequence of

1116 is used for the host computer.

3. Messages addressed to the CC1110 MCU will

always generate a reply. The replies to a com-

mand will be sent out of the same medium it was

received on (i.e., serial or RF link).

The previously mentioned network nodes have

been included in Figure 4 to illustrate their role in the

data flow. Note that for the above logic to take place,

it is necessary to convert messages to and from the

CC1110 and OpenLST protocols. The data rearrange-

ment during the packing and unpacking process is de-

picted in Figure 5.

2.2. AX.25 Protocol

The AX.25 protocol is an HDLC-derived protocol

(ISO, 2002) developed by the amateur radio commu-

nity to provide a standard for amateur packet radio

communications (Beech et al., 1998). This article will

focus on the protocol specifications and frame struc-

ture of AX.25 and will assume that the network por-

tion of the protocol has been implemented in the host

machine. This will allow for the OpenLST to act as a

TNC whose only purpose is to relay AX.25 frames.

2.2.1. Protocol Specifications

This article presents the protocol specifications of

the AX.25 protocol within the context of a small satel-

lite mission licensed to transmit in the UHF amateur

radio band. The physical interface with the host com-

puter consists of a UART connection, where data is

transmitted at 57600 baud using eight data bits, one

stop bit, no parity, and no flow control. These param-

eters are based off the KISS TNC and the satellite’s

mission requirements.

The OTA interface consists of a 2-FSK modulated

signal with a carrier frequency of 437.175MHz and a

deviation of 3.2kHZ. The bitstream uses NRZ(I) en-

coding and is sent LSb first, except for the 16-bit FCS

(discussed later), at a rate of 9600 baud. In addition,

G3RUH scrambling is used to evenly distribute the

power of the signal during transmission (Miller, 1995).

Lastly, the bitstream has to be bit stuffed to avoid spe-

cific bit sequences from appearing in the data. These

requirements are governed by the HDLC protocol

specification, and they have the largest impact on the

overall modifications to the OpenLST. As a result, the

specifics of NRZ(I) encoding, bit stuffing, and

G3RUH scrambling are presented.

Traditionally, binary streams are encoded using

the NRZ(L) convention, where “1” bits are defined

with a logic high and “0” bits with a logic low. How-

ever, AX.25 is often paired with the NRZ(I) conven-

tion that defines bits in terms of logic level transitions.

The exact definition depends on the implementation

but, in HDLC, a 0 bit is defined as a transition from

one logic level to another, whereas a 1 bit is defined as

a constant logic level or no transition.

Figure 4. Data flow visualization for an OpenLST radio.

Figure 3. Visualization of the network between two OpenLST radios.

Firmware Development for an Open-Source Small Satellite Amateur Radio Transceiver

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1113

Frame synchronization in AX.25 is achieved by

using a repeated byte sequence as both header and

footer flags for each frame. This flag byte, known as

the HDLC flag, is given by the sequence 7E16 or

011111102 (note the long run of six consecutive 1

bits). Since this sequence denotes the start and end of

each AX.25 frame, it is crucial that the sequence does

not appear anywhere else in the frame. This is the main

purpose of bit stuffing in HDLC-based protocols. For

every five consecutive 1 bits in the outgoing bit

stream, a 0 bit will be added (or stuffed) to the data.

For incoming streams, for every five consecutive 1

bits, a 0 bit will be ignored. The stuffed bit also forces

transitions to occur due to the NRZ(I) convention,

which helps prevent clock skew by eliminating long

runs of 1 bits.

Data randomization is also necessary to guarantee

an even distribution of power during transmission and

to guarantee consistent logic level transitions required

for clock synchronization. The G3RUH scrambling

scheme, adapted from Steve Goode’s (K9NG) 17-bit

LFSR, is often used with the AX.25 protocol for this

purpose (Miller, 1995). The method consists of a 17-

bit shift register with XOR gates (or taps) on b0, b11,

and b16 of the shift register. Each outgoing bit is

XOR-ed with the taps, added to the first element of the

shift register, and then sent out the RF link. Bits in the

shift register are left-shifted by one with each new bit

and the oldest bit in the register is removed. The exact

same procedure can be repeated to unscramble the bit-

stream.

2.2.2. Frame Formatting

The frame formatting is divided into separate con-

ventions for the host computer connection and for the

RF link. The host computer interface consists of a

KISS TNC that adheres to a frame structure known as

the KISS protocol (Chepponis et al., 1998). This con-

sists of a variable length packet with a two-byte header

and a single-byte footer. The KISS protocol is in-

tended to encapsulate other frame structures and al-

lows for compatibility regardless of the underlying

frame structure. The logic behind the KISS TNC re-

volves around four special characters or bytes: FEND

(C016), FESC (DB16), TFEND (DC16), and TFESC

(DD16). The TNC itself must follow the conditions be-

low during message transmission and reception:

1. A single FEND on either side will delimit a

KISS frame. Two FENDs in a row should not

be considered an empty frame and reception of

a FEND marks the end of the frame.

2. A single byte following the starting FEND in-

dicates the port (upper nibble) and command

(lower nibble).

Figure 5. Breakdown of data re-arrangement during packing and unpacking of OpenLST protocol messages.

Saborio Borbon, R. J. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1114

3. During packing, a FEND will be replaced with

a FESC followed by a TFEND, and a FESC

will be replaced with a FESC followed by a

TFESC.

4. During unpacking, a FESC followed by a

TFEND will be replaced with a FEND, and a

FESC followed by a TFESC will be replaced

with a FESC.

Just as with bit stuffing, the above logic is intended

to prevent the frame delimiter flags from appearing in

the data being transmitted. Note that the KISS protocol

does not necessarily define a frame structure, but it ra-

ther defines a set of rules for transporting other pre-

existing frame structures. A simple example of the

packing and unpacking process performed by a KISS

TNC is included in Figure 6.

The frame formatting for the OTA interface con-

sists of the AX.25 protocol UI frame. The UI frame is

delimited by at least one HDLC flag on either end,

which are intended for byte synchronization. The ac-

tual number of flags included varies between imple-

mentations. The frame contains a variable length

header and packet data, as well as a 16-bit CRC (also

called FCS in the context of AX.25) footer. The frame

is transmitted LSB first, and bytes are transmitted LSb

first, with the exception of the FCS which is transmit-

ted MSB first with its respective bytes transmitted

MSb first (Finnegan, 2014). A breakdown of the

AX.25 UI frame structure is shown in Figure 7.

The header of an AX.25 frame consists of a

variable length address field and a control field. The

first seven bytes of the former (B0 to B6 in the

diagram) consist of the amateur radio callsign of the

packet destination and the following seven bytes

correspond to the packet source callsign (B7 to B13).

There is an option to append additional callsigns

Figure 6. Sample KISS protocol packing and unpacking sequence.

Figure 7. AX.25 UI frame structure.

Firmware Development for an Open-Source Small Satellite Amateur Radio Transceiver

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1115

associated with the repeating stations that the packet

went through during transmission. However, for the

context of this article, this option will be ignored. The

callsigns consist of six uppercase alpha numeric

ASCII characters, that are left shifted by one bit, and a

single byte used for message forwarding inside an

AX.25 network. An SSID nibble is stored in b1-b4 of

this last byte to distinguish between stations using the

same callsign. The control and PID bytes are fixed to

the sequence F00316 in UI frames and the packet data

of the frame itself is stored in the variable length

information field. The last two bytes in the frame, BN-

1 and BN, contain the 16-bit FCS computed using the

CRC16-CCITT convention.

2.2.3. Data Flow

The data flow in an AX.25 transceiver is signifi-

cantly simpler than that of the OpenLST since there is

no way of directly addressing messages to the trans-

ceivers. The KISS TNC is responsible for moving an

AX.25 frame from the host computer to the transmit-

ter. The transmitter then unpacks the message, per-

forms necessary encoding/scrambling, appends the

HDLC flags, and relays the information out of the RF

link. This process is shown in Figure 8. Note that the

opposite of the process described occurs during mes-

sage reception.

2.3. OpenLST Firmware Logic and Structure

 The firmware of the OpenLST is structured

around a series of configurable interrupts used to mon-

itor incoming and outgoing data. Two dedicated inter-

rupts are responsible for monitoring each UART port

individually and relay OpenLST protocol frames be-

tween the host computer and MCU. An additional RF

link ISR monitors a carrier sense flag, that indicates

when an incoming RF signal surpasses a set power

threshold, and an EOM flag, which is set by the packet

engine. These are used to signal the start and end of

RF transmissions to the main program. A main loop

periodically checks the flags associated with new in-

coming or outgoing messages and executes the associ-

ated subroutines when a new message is available.

These subroutines are responsible for the packing and

unpacking of messages as described in Figure 5.

The OpenLST also leverages on the packet han-

dling engine and DMA controller of the CC1110. The

engine permanently runs in the background looking

for the preamble and SYNC bytes of the CC1110 pro-

tocol in the demodulator output. Upon finding a mes-

sage, a signal is sent to the DMA controller to move

the data bytes to the receive buffer. This occurs as a

routine independent from the main program. The

DMA controller is also responsible for moving bytes

from the transmit buffer to the packet engine, which

appends the preamble and SYNC bytes prior to send-

ing the message to the modulator. As can be seen, the

modulator input and output are never accessible to the

main program. The block diagram in Figure 9 depicts

a visual representation of the OpenLST firmware

structure and logic.

 Necessary Firmware Modifications

The modifications in this study strived to maintain

as much of the original OpenLST functionality as pos-

sible to conserve the solutions that the product already

introduced. More specifically, the modifications main-

tain compatibility with the existing Python toolbox

and OpenLST protocol commands, both of which have

space heritage.

Figure 8. Data flow in an AX.25 transceiver.

Saborio Borbon, R. J. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1116

3.1. Protocol Specifications

The most significant changes to the OpenLST

firmware occurred in the protocol specifications.

While the UART interfaces only required changes to

the baud rate and flow control settings, the OTA inter-

face required major restructuring. The transceiver con-

figurations had to be changed to remove the FEC en-

coding and data whitening that came with the CC1110

protocol, as well as to change the carrier frequency,

deviation, and data rate settings. The scrambling meth-

ods had to be replaced with G3RUH scrambling and

bit stuffing. However, the CC1110 does not include

configuration settings for such techniques. Moreover,

the NRZ(L) encoding had to be replaced with NRZ(I),

but the CC1110 is incompatible with said convention.

In addition, the bit order of the incoming and outgoing

data had to be reversed to replace the MSb first con-

vention introduced by the CC1110 modulator with the

LSb first convention used by AX.25.

3.2. Frame Formatting

The host computer interface must be compatible

with both the KISS and OpenLST protocols. The KISS

protocol compatibility is required to allow for the

OpenLST to be interfaced with a regular AX.25 mo-

dem, whereas the OpenLST protocol compatibility is

needed to use Planet’s ground station and reprogram-

ming software. To maintain the command functional-

ity of the OpenLST protocol, the interface was modi-

fied to accept KISS-packed OpenLST protocol com-

mands. The host computer interface was also rede-

fined to output responses to each protocol using the

appropriate format.

On the other hand, the OTA interface was only re-

quired to be compatible with the AX.25 protocol due

to licensing requirements. Therefore, the CC1110 pro-

tocol was removed from the OpenLST for normal op-

erations. However, some compatibility with the

CC1110 protocol was maintained to allow for OTA re-

programming of the board. In addition, a method for

packing OpenLST protocol commands in an AX.25 UI

frame was implemented to maintain the OpenLST

command functionality.

3.3. Firmware Logic

A key component of the firmware logic that

needed to be maintained was the network functionality

associated with the OpenLST protocol commands. A

method was developed to address AX.25 messages to

the OpenLST MCU and not just the host computer.

Likewise, the modified firmware logic incorporated a

method of addressing specific UART ports, as well as

a method for distinguishing between AX.25 messages

and AX.25-packed OpenLST protocol commands.

However, the largest modification required in the

firmware logic involved the restructuring of the trans-

mission and reception process. Since the packet engine

Figure 9. OpenLST firmware logic. ISRs have been surrounded by
dashed boxes. Processes associated with UART ports are shown in yel-
low, with the RF ISR in red, with RF transmission in green, and with RF

reception in blue.

Firmware Development for an Open-Source Small Satellite Amateur Radio Transceiver

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1117

is incompatible with the AX.25 encoding and scram-

bling requirements, the CC1110 is uncapable of rec-

ognizing NRZ(I) encoded messages and thus preamble

and SYNC word detection would never occur. There-

fore, the incoming transmissions had to be extracted

directly from the modulator output. This required the

bypassing of both the DMA controller and the packet

engine. Likewise, the transmission process required

additional steps to encode and scramble the outgoing

messages prior to handing them to the DMA controller

and packet engine.

 Implementation of Firmware Modifications

4.1. UART Interface Transmission/Reception

Modifications

The host computer interface logic was modified to

allow for compatibility with both KISS-packed mes-

sages and the OpenLST protocol. This was achieved

by replacing the UART RX ISR and UART TX func-

tions (shown in Figure 9) with the KISS TNC RX ISR

and KISS TNC TX functions, respectively. Both pro-

cesses act as a dual KISS modem and OpenLST parser

capable of discerning between protocols. Each UART

port has a dedicated KISS TNC for transmission and

reception of messages. A general overview of their re-

spective logic is shown in Figure 10.

The parsing and packing process of both routines

hinge on a global protocol type identifier (marked in

cyan) used to identify the underlying protocol and

packing of a message. Protocol Type 0 refers to an

OpenLST protocol frame, Type 1 to a KISS-packed

OpenLST protocol frame, and Type 2 to a KISS-

packed AX.25 frame. This variable is shared by all

processes and is useful for determining if a message

should be treated as an OpenLST protocol command.

The KISS TNC RX ISR works by continuously in-

specting the incoming byte stream from the UART

port and looking for the known SYNC words of the

KISS and OpenLST protocols. These bytes are unique

and thus can be used to determine between Type 0 and

Types 1 or 2 protocols. In the case of a KISS-packed

message, there is an additional check to determine if

an OpenLST protocol command is stored within the

packet. After completion of the parsing process, the

KISS TNC RX ISR will store the message bytes in the

UART RX buffer for the main program to access. For

Type 2 messages, these will correspond to a complete

AX.25 UI frame. In the case of Type 0 or 1 messages,

the stored bytes will be B3-BN (see Figure 1) of the

OpenLST command.

The KISS TNC TX function performs the reverse

of the process outlined above. The routine looks at the

UART TX buffer for outgoing messages from the

main program and performs the necessary packing

based on the value of the protocol type identifier. Upon

completion, the packed message is sent out of the

UART port.

4.2. Protocol Modifications

The protocol formatting issue was addressed by in-

troducing the protocol type identifier. However, this

variable only exists locally and there is no default

method in place to relay this information through the

OTA interface. Therefore, the default structure of the

AX.25 UI frame was modified to introduce a set of

flags specifying the type of message that is contained

in the frame. These flags are also used to route the

message to the appropriate UART port and to deter-

mine if the UART output should be KISS packed. The

information is stored in the SSID nibble of the desti-

nation callsign, where individual bits in the SSID are

used as flags for specifying the message format. This

is possible given the assumption that the destination

callsign will be unique.

The flags in the SSID nibble are driven by the pro-

tocol type identifier of the source device. The first bit

Figure 10. Firmware logic for KISS TNCs.

Saborio Borbon, R. J. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1118

of the nibble, or b1, is set high if the frame contains an

AX.25 message (i.e., protocol Type 2). The destina-

tion UART port is given by b2, which is set high for

UART1 and low for UART0. Lastly, b3 is set high

whenever the output to the host computer should be

KISS packed (i.e., protocol Type 1 or 2). These flags

are automatically set by the OpenLST based on the

protocol type identifier and the UART port source of

the message. That is, messages originating from

UART1 will be addressed to UART1 of the destina-

tion device and so on. However, an override bit (given

by b4) can be set high to create a custom flag sequence.

The CC1110 protocol was removed altogether

from the RF interface during normal operations. In-

stead, a message packing scheme was defined in which

OpenLST protocol messages would be stored in the

information field of the AX.25 UI frames. This allows

for the OpenLST protocol command structure to re-

main unmodified while being relayed between devices

and thus removes the need to modify the command

processing logic from the main program. A breakdown

of the outgoing/incoming RF frame structure is shown

in Figure 11.

Bytes B3 to BN of the OpenLST protocol (high-

lighted in red) are packed into the information field of

the AX.25 UI frame. For an outgoing message, the

transceiver is responsible for appending the header and

footer bytes of the AX.25 frame to the data (shown in

blue) before transmitting. The destination address is

obtained from a lookup table where OpenLST HWIDs

are mapped to their respective callsigns. The source

address is obtained from the preprogrammed local

callsign. For incoming messages, the transceiver is re-

sponsible for removing the header and footer bytes be-

fore relaying the information to the main program.

4.3. RF Interface Modifications

4.3.1. Transmission Logic Modifications

The modifications to the transmission logic of the

RF interface were minimized by taking advantage of

the existing implementation of the packet engine and

DMA controller. Even though these two processes are

unable to perform the proper encoding for the out-

going data, they are still capable of reliably transmit-

ting bytes from a buffer regardless of their format.

Therefore, both routines can transmit an AX.25 UI

frame as long as it has been properly encoded before

being stored in said buffer. This removed the need for

the development of a dedicated routine for encoding

and sending a bitstream to the CC1110 modulator.

Therefore, an outgoing message on the RF link is for-

matted as shown in Figure 12.

The yellow segments in the outgoing message rep-

resent the header bytes added by the packet engine.

Note that the default SYNC bytes were changed to

match the HDLC flag. The AX.25 UI frame itself is

stored in the green segment of the message and in-

cludes all necessary encoding as well as the header and

footer HDLC flags. Even though the final outgoing

message does not exactly match an AX.25 UI frame,

it is still effectively a valid AX.25 message. Therefore,

yellow portion of the message as noise. This achieves

the desired AX.25 transmitting behavior with minimal

changes to the firmware structure.

Figure 11. Frame structure of an OpenLST protocol message packed in an AX.25 UI frame.

Firmware Development for an Open-Source Small Satellite Amateur Radio Transceiver

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1119

The above modification required the development

of a transmitting function responsible for encoding and

formatting outgoing messages into the AX.25 conven-

tion. Upon completion, the function stores the format-

ted outgoing frame in the RF transmit buffer, which is

accessible to the packet engine and DMA controller.

The overall process is outlined in the RF TX section

of Figure 14.

4.3.2. Initial Reception Logic Modifications

The initial reception logic modifications revolved

around the compatibility issues of the packet engine

with NRZ(I) encoding and G3RUH scrambling. A

new process had to be implemented to directly monitor

the bitstream output of the CC1110 modulator. How-

ever, the modulator raw output is not accessible from

within the MCU, it can only be accessed externally.

Therefore, one of the debug pins had to be configured

to output the raw modulator bitstream. The pin could

then be read internally by the CC1110 MCU to gain

access to the bits.

The new RF reception routine was configured as a

timed interrupt triggered at 9.6 kHz (9600 baud) to

match the expected data rate from incoming RF trans-

missions. At each interrupt trigger, the modulator bit-

stream would be sampled if the carrier sense flag was

asserted. The sampled bits were NRZ(I) decoded and

G3RUH unscrambled before being stored in a single

byte acting as an eight-bit shift register. After each in-

terrupt trigger, the routine would discard the oldest bit

in the shift register and then append the newest sam-

pled bit.

A separate section within the same ISR would

check for an HDLC flag in the shift register after the

first eight bits of the transmission were read. If an

HDLC flag was not found, the shift register would be

left shifted by one bit and the check would be per-

formed again on the next interrupt trigger. This pro-

cess was repeated until the first HDLC flag was de-

tected and thus bit synchronization was achieved with

the bitstream. Once synchronized, the bit counter

would be reset, and the shift register would be sampled

every eight interrupt triggers. The sample would then

be saved as a byte in the RF receive buffer for the main

program to access. The process would repeat itself un-

til the first HDLC footer flag was detected, which in-

dicates the end of the frame. Figure 13 provides an

overview of how the bitstream and frame parser logic

was implemented in the RF receive ISR.

The above modification was used to successfully

receive AX.25 UI frames with the OpenLST hardware.

Figure 13. Logic for the first attempt at modifying the reception

process.

Figure 12. Frame structure for RF transmissions.

Saborio Borbon, R. J. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1120

However, frames were often improperly decoded dur-

ing reception as a result of clock skew. The sampling

of the bitstream would drift and cause incoming bits to

be skipped or sample twice, which would then lead to

the entire frame being improperly decoded. This issue

was expected, since the timing of the interrupt was not

directly tied to the clock signal of the incoming mes-

sage, but its effect on the parsing process was more

significant than expected. The clock skew observed

would also be worsened by the expected variations in

baud rate introduced by doppler shift during satellite

transmissions, further increasing the packet loss.

Figure 14. General overview of the final modified OpenLST firmware.

Firmware Development for an Open-Source Small Satellite Amateur Radio Transceiver

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1121

A possible solution to mitigate the effects of clock

skew would involve tying the trigger of the interrupt

to the incoming clock signal instead of a timer. This is

technically possible since the incoming clock signal

from the CC1110 modulator can be set as a debug pin

output. However, in practice, this is not feasible due to

hardware constraints on the OpenLST board. Alterna-

tive solutions involving clock recovery schemes were

also explored. Nevertheless, these require the incom-

ing signal to be pulse-shaped and sampled from an

ADC and is incompatible with the bitstream output

available to the MCU.

4.3.3. Final Reception Logic Modifications

The previously outlined hardware constraints lim-

ited the completeness of the solution that could be

achieved with only software modifications. Since us-

ing the modulator output was not a viable option, it

was decided to compromise on the receiving require-

ments and implement a pseudo-AX.25 solution that

would use the existing packet engine and DMA con-

troller routines. The modification hinges on the frame

structure of the transmission process outlined in Sec-

tion 4.3.1. The header portion of the message is auto-

matically created by the packet engine upon transmis-

sion and thus adheres to an encoding format that is

compatible with the CC1110. This implies that the

header of this message can be detected by a receiving

CC1110 packet engine, while the remainder of the

frame can be moved to the RF receive buffer by the

DMA controller. This exact process was implemented

in the final modification to the reception logic. An ad-

ditional receive function was implemented to parse

and decode the bytes stored in the receive buffer. The

overall process is shown in the RF RX section of Fig-

ure 14.

The final modifications for the receiving logic ad-

here to the AX.25 format needed for OTA transmis-

sions. The additional header bytes can be treated as

noise and thus the licensing requirements are met by

the modifications. Nonetheless, the solution compro-

mises on the full compatibility with an AX.25 modem.

Messages transmitted by the OpenLST will be com-

patible with amateur radio ground stations. However,

a message transmitted by these ground stations will

not be recognized by a modified OpenLST unless the

extra header bytes are included.

4.4. Modified OpenLST Firmware Logic

The overall modified OpenLST firmware structure

and associated logic is shown in Figure 14. Note how

the main program loop closely resembles the original

main program shown in Figure 9. The main difference

lies in the additional check for the protocol type iden-

tifier. This guarantees that command processing only

occurs on OpenLST protocol commands, thus main-

taining the original network structure of the firmware.

The block diagram also depicts the functions available

to the main program (included in solid-edged boxes)

and the ISRs running in the background (included in

dashed-edged boxes). The different routines have been

color-coded to allow for better interpretation of their

overall role in the firmware. Processes associated with

the KISS TNCs are shown in yellow, with the RF

transmission in green, with the RF reception in blue,

and with the RF ISR in red. The global protocol type

identifier has been colored in cyan for reference. The

modified firmware was implemented and successfully

tested using off-the-shelf SDRs (Saborio, 2021).

 Conclusion

Developing an affordable and reliable communi-

cations solution for small satellites would solve one of

the largest challenges faced by teams working on

small missions. An open-source solution provides the

flexibility necessary to allow for firmware and hard-

ware modifications to best meet the mission require-

ments, while a solution compatible with amateur

packet radio protocols allows teams to leverage the ex-

isting amateur radio infrastructure when developing

their communication systems. The OpenLST inte-

grated hardware transceiver developed by Planet pro-

vides a framework to develop this solution. As this

study has shown, it is possible to achieve compatibility

with amateur packet radio protocols solely through

software modifications. The modifications imple-

mented allowed for full compatibility with AX.25

while transmitting and partial compatibility while re-

ceiving. However, it was noted that full compatibility

Saborio Borbon, R. J. et al.

Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1122

in either direction was possible with the proper hard-

ware modifications. This research has demonstrated

that a modified version of the OpenLST transceiver

can provide a viable solution to the small satellite com-

munications problem.

References

Beech, W. A., Nielsen, D. E., and Taylor, J. (1998):

AX.25 Link Access Protocol for Amateur Packet

Radio. Tucson Amateur Packet Radio Corpora-

tion. Available at: https://www.tapr.org/pdf/

AX25.2.2.pdf (accessed Jun. 1, 2020).

Chepponis, M. and Karn, P. (1997): The KISS TNC:

A Simple Host-to-TNC Communications Proto-

col. Available at: http://www.ax25.net/

kiss.aspx (accessed Jun. 1, 2020).

Finnegan, K. W. (2014): Examining Ambiguities in

the Automatic Packet Reporting System, Dept. of

Electrical Eng., California Polytechnic State

Univ., San Luis Obispo, CA. Available at:

https://digitalcommons.calpoly.edu/cgi/viewcon-

tent.cgi?article=2449&context=theses (accessed

Jun. 1, 2020).

Information technology – Telecommunications and

Information Exchange Between Systems – High-

level Data Link Control (HDLC) Procedures

(2002): ISO/IEC 13239:2002. Available at:

https://www.iso.org/standard/37010.html (ac-

cessed May 15, 2020).

Klofas, B. (2018): Planet Releases OpenLST, An

Open Radio Solution. Available at:

https://www.planet.com/pulse/planet-openlst-ra-

dio-solution-for-cubesats/ (accessed Apr. 1, 2021).

Miller, J. (1995): 9600 Baud Packet Radio Modem

Design. Available at: https://www.amsat.org/

amsat/articles/g3ruh/109.html (accessed Jun. 1,

2020).

Saborio, R. J. (2021): Development of an open-Source

Amateur Radio Transceiver for Small Satellites,

Dept. Aerospace Eng., Georgia Institute of Tech-

nology, Atlanta, GA. Available at:

http://www.ssdl.gatech.edu/sites/de-

fault/files/ssdl-files/papers/mastersProjects/Sabo-

rioR-8900.pdf (accessed Apr. 1, 2021).

https://www.tapr.org/pdf/AX25.2.2.pdf
https://www.tapr.org/pdf/AX25.2.2.pdf
http://www.ax25.net/kiss.aspx
http://www.ax25.net/kiss.aspx
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=2449&context=theses
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=2449&context=theses
https://www.iso.org/standard/37010.html
https://www.planet.com/pulse/planet-openlst-radio-solution-for-cubesats/
https://www.planet.com/pulse/planet-openlst-radio-solution-for-cubesats/
https://www.amsat.org/amsat/articles/g3ruh/109.html
https://www.amsat.org/amsat/articles/g3ruh/109.html
http://www.ssdl.gatech.edu/sites/default/files/ssdl-files/papers/mastersProjects/SaborioR-8900.pdf
http://www.ssdl.gatech.edu/sites/default/files/ssdl-files/papers/mastersProjects/SaborioR-8900.pdf
http://www.ssdl.gatech.edu/sites/default/files/ssdl-files/papers/mastersProjects/SaborioR-8900.pdf

Firmware Development for an Open-Source Small Satellite Amateur Radio Transceiver

 Copyright © A. Deepak Publishing. All rights reserved. JoSS, Vol. 11, No. 1, p. 1123

APPENDIX 1: Nomenclature

2-FSK = Two Frequency-Shift Keying

ADC = Analog-to-Digital Converter

ASCII = American Standard Code for Information Inter-

change

bi = i-th bit of a byte. LSb is given by ze-

roth bit.

Bi = i-th byte of a frame. LSB is given by

zeroth byte.

CRC = Cyclic Redundancy Check

DMA = Direct Memory Address

EOM = End of Message

FCS = Frame Checking Sequence

FEC = Forward Error Correction

GPIO = General Purpose Input Output

HDLC = High-level Data Link Control

HWID = Hardware Identification Number

IC = Integrated Circuit

ISR = Interrupt Service Routine

KISS = “Keep It Simple, Stupid”

LFSR = Linear-Feedback Shift Register

LSB = Least Significant Byte

LSb = Least Significant Bit

LSn = Least Significant Nibble

MCU = Microcontroller Unit

MSB = Most Significant Byte

MSb = Most Significant Bit

MSn = Most Significant Nibble

Msg = Message

NRZ(I) = Non-Return-to-Zero Inverted

NRZ(L) = Non-Return-to-Zero Level

OTA = Over-the-Air

RF = Radio Frequency

SDR = Software-Defined Radio

SMA = Sub-miniature version A

SOM = Start of Message

SSID = Secondary Station Identifier

TNC = Terminal Node Controller

UART = Universal Asynchronous Receive Transmit

UHF = Ultra High Frequency

X2 = base 2 number. X denotes the number. MSb is

shown first.

X16 = base 16 number. X denotes the number. MSn is

shown first.

